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INTRODUCTION
The lateral prefrontal cortex (LPFC) is necessary for learning associations between arbitrary pairs of stimuli and responses. 
Lesions to LPFC area 8a severely impair the ability of macaques to learn associations between more than one stimulus-re-
sponse pair simultaneously (Petrides, 1987; referred to as conditional associative learning–CAL). Saccade direction selectiv-
ity in single LPFC neurons has also been shown to emerge earlier in a trial as macaques learn the associations between ob-
jects and saccade directions (Asaad et al.,1998). However, the ensemble-level mechanisms of CAL in LPFC are poorly un-
derstood. The need to average neuronal activity across multiple instances of learning in single neuron recordings can mask 
underlying dynamics in the neural activity, obscuring the relationship between neuronal activity and behavior. We predict 
that trial-to-trial variability in the learning curve will be reflected in the ensemble state.

QUANTIFYING PERFORMANCE AND BEHAVIOR
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A subject’s performance for five 
example rule blocks from a 
single session. The rule is dis-
played in the top row (e.g. blue 
= top, green = bottom). Trial out-
comes are displayed in the 
middle row. The bottom row 
shows a continuous estimate of 
the animal’s performance (i.e. 
learning curve), estimated as in 
Smith et al. (2004) J. Neuro. The 
95% confidence interval (shad-
ed grey region) can be used to 
determine the first trial in which 
the animal’s performance was 
significantly above chance.
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MULTIELECTRODE ARRAY RECORDING
Two Macaca fascicularis were implantat-
ed with 96-electrode microarrays (Black-
rock Microsystems, Utah) in LPFC area 
8a. We recorded neuronal ensemble ac-
tivity across dozens of recording sessions. 
The data presented here are from a six 
recording sessions of 40-70 units each.

CONDITIONAL ASSOCIATIVE LEARNING (CAL) TASK

response:
saccade to target

stimulus:
250-500ms

fixation:
700ms

cue:
1000ms

delay
300ms

potential cue colors potential target configurations

A rule is generated by randomly select-
ing two cue color/target location pairs 
(e.g. green = right, blue = left). Once the 
subject has learned the rule (~50 trials 
with ≥80% correct), a new rule is gener-
ated. 

LPFC area 8a neurons exhibit di-
verse selectivity across features 
and time during a rule-learning 
task.

Learning-related fluctuations in 
behavioral performance correlate 
with the strength of saccade 
choice representation in LPFC 
neuronal ensembles

Choice information in single trials 
accumulates more rapidly after 
learning.

Learning stabilizes the ensemble 
code for choice across time within 
single trials.

Thanks to Walter Kucharski and Stephen Nuara for technical assistance

Left: Time course of projec-
tion-performance correlation. A 
200ms bin was stepped at 
100ms intervals to compute the 
ensemble firing rates across the 
time course of each individual 
trial, and the procedure from A 
was repeated at each time 
point. Shaded region = 95% 
confidence interval. n = 31 rule 
blocks. Blue region indicates 
time bin used for previous ex-
amples.

A logistic regression model was fitted to each rule block to predict the subject’s response. The models were 
fitted to the ensemble firing rates averaged over the final 200ms of the delay epoch. The models were then 
used to project the ensemble firing rates for each trial (right y-axis, blue). We then computed the Spearman 
correlation between the projections and the behavioral performance. Note that a negative distance indicates 
log odds in favor of an incorrect classification. Logistic regression projections were smoothed with gaussian 
kernel of SD = 3 trials.

Left: Results for an example rule block. Right: Results across all 31 rule blocks.
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For the 40 consecutive trials with the highest behavioral performance in each rule block, a 200ms window was stepped at 100ms intervals and a logistic regression model was fitted to the firing rates in each 
time bin. The models were then used to decode the animal’s choice at each time point for trials during chance vs. high performance. Note that the models were fitted on and used to project correct trials only.

Shaded region = S.E.M.

Cross-temporal decoding analysis. The red circumscribed regions indicate train/test bins in which the 95% confidence 
intervals of classification accuracy exceed chance.
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Diverse task selectivity in individual units. A GLM was fitted to each unit in order to predcit its firing rate from task features and across different task epochs. A 
separate model was fitted to firing rates from each task epoch (task epochs denoted by color), and different predictors are labeled on the x-axis. Predictor 
weights were L1-regularized (lasso) to promote sparsity. The proportion of units with non-zero weights for each predictor is shown on the y-axis. n = 312 units.

Rasters for two exam-
ple neurons from two 
different subjects. Ras-
ters are separated into 
three parts based on 
the alignment point: 
fixation initiation (left), 
cue onset (center), or 
saccade onset (right). 
Background color indi-
cates task epoch. Hori-
zontal lines delineate 
different rule blocks. 
Note the changes in 
firing rate both within 
and across rule blocks.
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DIVERSE SELECTIVITY IN INDIVIDUAL NEURONS

LEARNING ACCELERATES AND TEMPORALLY-
STABILIZES CHOICE REPRESENTATION

CONCLUSIONS

LEARNING MODULATES CHOICE CODING


