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SUMMARY 

Working memory (WM) is the transient (i.e. milliseconds to seconds) maintenance 

and/or manipulation of information that is no longer available to the senses. WM 

capacity is strongly correlated with measures of intelligence and is a crucial 

component of goal-directed behavior. More than 80 years of neuropsychological and 

neurophysiological research have demonstrated the role of the prefrontal cortex 

(PFC) in WM. The WM-related activity in primate PFC is hypothesized to arise 

from the structure of the network in which the neurons are embedded. Recent 

studies have also shown that it is difficult to predict the properties of neuronal 

ensembles from the properties of individually-examined neurons. However, our 

current understanding of the ensemble-level mechanisms of WM comes largely from 

theoretical modeling and speculation.  This doctoral thesis seeks to rectify this issue 

experimentally. 

 First, I examined the intrinsic network structure of macaque area 8a by 

using high-density microelectrode arrays to record from ensembles of 

simultaneously-active neurons during fixation behavior. We found a pattern of 

intrinsic functional connectivity between neurons indicative of a recurrent-
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excitatory lateral-inhibitory network structure, which has been hypothesized to 

allow WM maintenance. 

 Next, I used the same microelectrode arrays to record ensemble activity while 

the animals performed a spatial working memory (SWM) task, and found neuronal 

correlates of a psychophysical bias in which visual-mnemonic space is divided by the 

meridians of the visual field. This bias is present at multiple levels of examination: 

in single neuron firing rates, the structure of correlated firing rate variability, and 

the neuronal ensemble representations. We also found that 8a neurons are 

anatomically clustered in a non-retinotopic manner that partially reflects the 

organization of visual space. 

 Finally, I examined how ensembles of simultaneously-recorded neurons in 8a 

represent SWM and how it differs from single neuron representations. We found 

that SWM maintenance modulated the structure of correlated variability in a 

manner indicative of increased coupling between similarly-tuned neurons and 

increased inhibition between dissimilarly-tuned neurons. This structure of 

correlated variability could facilitate or impair the readout of WM representations, 

depending on the size of the ensemble and tuning properties of its constituent 

neurons. We also found neurons that contained little WM information when 
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examined in isolation, but contributed to coding when part of an ensemble by 

shaping the ensemble’s correlated variability structure. This final result is a 

powerful example of a phenomenon that is inaccessible in individually-recorded 

neurons, and emphasizes the importance of multi-neuron recordings for elucidating 

the neuronal mechanisms of cognition. 
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RÉSUMÉ 

La mémoire de travail (MdT) est la maintenance temporaire et / ou la manipulation 

d'informations qui ne sont plus disponibles aux sens. La capacité de la MdT est 

fortement corrélée avec les mesures d'intelligence et constitue un élément crucial du 

comportement adaptatif humain. Plus de 80 ans de recherche neuropsychologique et 

neurophysiologique ont démontré le rôle du cortex préfrontal (CPF) dans la MdT. 

L'activité liée à la MdT dans le cortex préfrontal des primates découle supposément 

de la structure du réseau dans laquelle les neurones sont intégrés. Des études 

récentes ont montré qu'il est difficile de prédire les propriétés des ensembles 

neuronaux à partir des propriétés des neurones examinés individuellement. 

Cependant, notre compréhension des mécanismes de réseau de la MdT provient en 

grande partie de la modélisation théorique et de la spéculation. Cette thèse de 

doctorat vise à adresser cette question expérimentalement. 

Tout d'abord, j'ai examiné la structure neuronale de la zone anatomique 8A 

du cerveau du singe en utilisant des puces de microélectrodes à haute densité pour 

enregistrer des ensembles de neurones simultanément actifs pendant le 

comportement de fixation visuelle. Nous avons trouvé un schéma de connectivité 
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fonctionnelle intrinsèque entre les neurones indiquant une structure d’inhibition 

latérale récurrente, en support aux modèles théoriques de la MdT. 

Ensuite, j'ai utilisé les mêmes microélectrodes pour enregistrer la 

méthodologie de l'activité d'ensemble neuronal tandis que l'animal effectuait une 

tâche de mémoire de travail spatial (MdTS) et j’ai trouvé des corrélats neuronaux 

d'un biais psychophysique dans lequel l'espace visuel-mnémonique du champ visuel. 

Ce biais est présent à plusieurs niveaux d’examen : dans les taux d’activation des 

neurones individuels, la structure de la variabilité corrélée de l’activation et les 

représentations d'ensemble neuronal. Nous avons également constaté que les 

neurones de 8A sont anatomiquement regroupés de manière non-rétinotopique. 

Enfin, j'ai examiné comment les ensembles de neurones simultanément 

enregistrés dans 8A représentent la MdTS et comment ils diffèrent des 

représentations de neurones individuels. Nous avons constaté que la maintenance 

de la MdTS module la structure de la variabilité corrélée d'une manière indicative 

d'un couplage accru entre des neurones similaires et d’une inhibition accrue entre 

des neurones dissemblables. Cette structure de variabilité corrélée pourrait faciliter 

ou nuire à la lecture des représentations de la MdTS dépendamment de la taille de 

l'ensemble et des propriétés d'accord de ses neurones constitutifs. Nous avons 
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également trouvé des neurones qui contiennent peu d'information lorsqu'ils sont 

examinés isolément, mais qui contribuent au codage lorsqu'ils font partie d'un 

ensemble en façonnant la structure de la variabilité corrélée de l'ensemble. Ce 

résultat final est un exemple puissant d'un phénomène inaccessible par 

l’enregistrement individuel des neurones et souligne l'importance d’analyser la 

coopération au sein d’ensembles neuronaux pour élucider les mécanismes 

neuronaux de la cognition. 
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1.1 Introduction 

A driver thinks little about the routines he or she encounters on the road during a 

daily commute. However, a successful transit from home to work could be 

considered a lesson in prefrontal cortex (PFC) function. A driver might first depress 

the brake while starting the car, waiting until the audible response issues from the 

motor before removing pressure from the pedal. A driver must recognize cross 

traffic at a stop sign and determine yield conditions, manipulating the controls for 

speed and direction without looking away from the road. A driver must maintain 

the positional information of other vehicles outside the immediate field of view. A 

driver confronted with a split second decision to drive directly over either a pothole 

or an open manhole will choose the safer of the two obstacles. 

In the face of all this active decision making, it is as remarkable that the 

driver not only makes the correct choices when forced to decide, but maintains a 

steady state of non-decision making while not presented with new, material data. 

Additionally, the driver does not randomly stop the car or veer off the road in 

response to novel or unexpected stimuli. This vigilant reassessment when 

confronted with trivial data and the ability to reason out decision-critical 

information from noise or repetitious inputs is an equally important capability. A 
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flexible resting state with respect to the range of sensory inputs allows humans to 

decipher meaning from the dense reality around them.  

This scenario involves coordinating detailed sensory and motor information 

with internal goals and motivations in a manner that is robust to the multitude of 

alternative possibilities. Flexibility and diversity of behaviors are considered 

hallmarks of intelligence. The cognitive control required to do this involves 

coordination across many areas of the brain, but PFC is widely considered to be 

paramount (Passingham, 1993; Petrides, 1994; Miller and Cohen, 2001; Fuster, 

2008). On a pragmatic level, research into the neural mechanisms underlying these 

identifiable cognitive capabilities continues to aid countless individuals, giving 

insight into their pathologies and providing novel therapeutic routes toward the 

mitigation of neurological illness. More broadly, however, developing accountable 

mechanistic descriptions of cognition has generated as much insight into the 

biological foundations of our shared humanity as it has provided avenues for 

understanding any specific etiology. 

 Given the myriad phenomena relevant to “cognitive control”, a tractable 

research program requires selecting specific, clearly-defined exemplars to study. 

Primates are known to have sophisticated behavioral repertoires, and PFC 
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development differentiates primates from other animals (Miller and Cohen, 2001; 

Fuster, 2008). Thus, I have chosen to focus on one model phenomenon that is reliant 

on the PFC in non-human primates: working memory (WM), the transient (i.e. 

milliseconds to seconds) maintenance of information that is no longer available to 

the senses (Baddeley and Hitch, 1974; Baddeley, 1992). More specifically, I will be 

studying spatial working memory (SWM–sometimes called visuospatial working 

memory or visuospatial short term memory), WM for a location in space (Fuster and 

Alexander, 1971; Goldman-Rakic, 2011). SWM is used, for example, when one rests 

their utensil on the table while dining, perhaps to take a sip of wine, and then picks 

up the utensil again without ever having to break eye contact with their dining 

partner. 

While the need to respect social mores during a fine dining experience may 

not be the most scientifically compelling or generalizable scenario, the ubiquity and 

importance of WM cannot be understated. Goldman-Rakic expressed this 

eloquently: 

At the most elementary level, our basic conceptual ability to appreciate that an object 

exists when out of view depends on the capacity to keep events in mind beyond the 

direct experience of those events. For some organisms, including most humans under 

certain conditions, "out of sight" is equivalent to "out of mind." However, working 
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memory is generally available to provide the temporal and spatial continuity 

between our past experience and present actions. (Goldman-Rakic, 1995) 

 The necessity for complex behavior can also be understood in the context of 

evolutionary pressure to optimize the tradeoff between metabolic costs and 

information processing capacity (Niven and Laughlin, 2008; Atick, 2011). 

Information processing in the nervous system is metabolically costly. The human 

brain accounts for approximately 20% of resting oxygen consumption, despite 

constituting only 2% of body mass (Kety, 1957). Increasing the information 

processing capacity of the nervous system would rapidly become metabolically 

untenable. One effect of this bandwidth limitation is that organisms must obtain 

information about the environment by selectively sampling subsections of it. These 

subsections are then integrated over time to construct a cohesive representation of 

the external environment. Much of this processing and integration occurs below the 

level of awareness, and this component is commonly conceptualized as “perception”. 

Nevertheless, this process also applies to quantities in the “cognitive” domain, 

which typically involve greater abstraction, flexibility, and/or occur over longer 

timescales, and of which the subject is aware. WM can be considered the application 

of this process to cognitive variables. Re-examining the previously presented 

example of driving, one can find countless examples of its usage: maintaining a 
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representation of other vehicles that are not currently visible; the most recently 

observed speed limit sign; the street number of the destination, repeated to oneself 

in order to constantly refresh the memory. The complexity of the situation rapidly 

becomes overwhelming. It should come as no surprise that WM capacity is strongly 

correlated with measures of human intelligence (Engle et al., 1999; Conway et al., 

2003). 

1.2 Structure and Function of the PFC 

WM is one of myriad cognitive phenomena in which the PFC is involved (Miller and 

Cohen, 2001; D'Esposito and Postle, 2015; Riley and Constantinidis, 2015). Other 

phenomena associated with the PFC include associative learning (Wise and Murray, 

2000), attentional filtering (Noudoost et al., 2010), and strategic reasoning (Lee, 

2008), all across a variety of modalities. Miller and Cohen have attempted to 

integrate the diverse set of phenomena and findings into a model of the PFC, a 

brain region they describe as serving 

… a specific function in cognitive control: the active maintenance of patterns of 

activity that represent goals and the means to achieve them. They provide bias 

signals throughout much of the rest of the brain, affecting not only visual processes 

but also other sensory modalities, as well as systems responsible for response 

execution, memory retrieval, emotional evaluation, etc. The aggregate effect of these 
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bias signals is to guide the flow of neural activity along pathways that establish the 

proper mappings between inputs, internal states, and outputs needed to perform a 

given task (Miller and Cohen, 2001). 

While Miller and Cohen were not the first to propose the PFC as the locus of 

goal-directed behavior (Batuev et al., 1980; Batuev, 1986), their model successfully 

articulates the commonalities in the diversity of phenomena associated with the 

PFC. Indeed, “active maintenance of patterns of activity that represent goals and the 

means to achieve them” succinctly encapsulates WM—assuming the external 

information is not currently available to the senses. 

Working memory-related activity has been localized to specific sub-regions of 

the PFC in human and non-human primates (Passingham, 1993; Miller and Cohen, 

2001; Petrides, 2005a; 2005b; Fuster, 2008; Goldman-Rakic, 2011). 

Electrophysiological, neuropsychological, and functional imaging studies have 

shown that lateral prefrontal cortex (LPFC), specifically macaque and human areas 

46, 9/46d, 9/46v, and 8a (Figure 1.1), are involved–correlatively and causally– in 

SWM. 
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Figure 1.1: Cytoarchitectonic map of the lateral surface of macaque PFC. From 
(Petrides, 2005a). Abbreviations: Ai, inferior arcuate sulcus; CS, central sulcus; SF, 
Sylvian fissure. 

1.3 Origins of PFC Research 

The PFC’s role in behavior was succinctly encapsulated by the neurologist Bianchi 

in 1895, when describing “frontal lobe syndrome” as resulting in a “failure of 

synthesis” (Bianchi, 1895; 1922). He then enumerates the symptoms: 

Loss of ‘perceptive power’, leading to defective attention and object recognition; 

reduction in memory; reduction in ‘associative power’, leading to lack of coordination 

of the individual steps leading towards a given goal, and thus to severe difficulty 
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solving anything but the most simple problem; altered emotional attachments, 

leading to serious changes in ‘sociality’; disruption of focal consciousness and 

purposive behavior, leading to apathy and/or distractibility (Bianchi, 1895; 1922; 

Smith, 2003) 

This account is remarkably similar to modern assessments of PFC function (Milner, 

1982; Milner and Petrides, 1984; Stuss and Benson, 1984; Petrides, 1994; Miller 

and Cohen, 2001). 

The relationship between the PFC and cognition was also compelling to 

Lashley, who proposed prescient research questions in 1920, addressing functional 

neuranatomical distinctions: “the question of prime importance … is that of the 

existence of anatomical divisions of the nervous system to which the function of 

learning is restricted” (Lashley, 1920), as well as the causal role of PFC in learning: 

“learned reactions are mediated by … the frontal and parietal association areas in 

higher mammals … [but] do the association areas have a directive function in 

learning or are they masses of conductive tissue through which nerve impulses 

penetrate at random from afferent to efferent projection areas?” (Lashley, 1920). 

While Lashley’s conclusions that “memory” is unitary and stored diffusely across 

the whole cortex proved inaccurate, due largely to imprecise lesioning methods and 

multifaceted tasks, his work is still considered foundational. 
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1.4 Neuropsychology of Working Memory 

The foundations of neuropsychological WM research can be traced to Jacobsen, who 

tested chimps and monkeys with PFC lesions on two kinds of WM tasks, variants of 

which are still in use (Jacobsen, 1935; Jacobsen et al., 1935; Jacobsen and Nissen, 

1937). In the “delayed memory response” task, the monkey watches while a food 

reward is placed under one of two identical cups. A screen is then lowered that 

occludes the food wells from view, and after a variable delay epoch of seconds to 

minutes, the screen is lifted and the subject is allowed to choose one of the two cups. 

A correct response grants access to the food reward, while an incorrect response 

yields no reward. The “delayed memory alternation” task is very similar, except the 

cup hiding the food reward is always the cup that did not contain the reward in the 

most recent successful trial. Jacobsen found that monkeys with unilateral lesions of 

PFC were not noticeably impaired on either task compared to pre-lesion 

performance, while monkeys with bilateral lesions were severely impaired on both 

tasks, and did not improve with additional training. 

Further research by Blum (Blum, 1952) showed that lesions of macaque PFC 

impaired performance on visual and auditory delayed memory response tasks, as 

well as visual and auditory delayed-response tasks without a memory component 
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(i.e. the stimulus was visible throughout the delay). Crucially, Blum also 

demonstrated that the impairment was most severe in subjects with focal lesions of 

the principal sulcus and prearcuate areas (i.e. LPFC), and that the impairment was 

proportional to the lesion size. A series of studies by Mishkin and Pribram (Mishkin 

and Pribram, 1955; 1956; Pribram and Mishkin, 1956) demonstrated that similar 

lesions also cause performance deficits with modified numbers of choices, spatial 

layouts, and in object-based WM, in both alternation and non-alternation tasks. 

These neuropsychological studies are the foundations of WM research, and 

primed the field for the electrophysiological techniques that were widely adopted in 

the following decades. 

1.5 Electrophysiology of Working Memory and PFC 

A potential neural mechanism for WM was first proposed in 1949, when Hebb 

postulated that sustained neuronal activity in the absence of stimulus input could 

serve as the neural mechanism for WM maintenance (Hebb, 1949; 2005). Two 

decades later, in 1971, Fuster and Alexander discovered neurons in macaque LPFC 

(and the medial dorsal nucleus of the hypothalamus) that exhibited sustained 

activity during the delay epoch of a delayed memory response task (Fuster and 

Alexander, 1971) (WM-selective neurons). That same year, Kubota and Niki found 
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neurons that were more active during the delay portion of a delayed memory 

alternation task (Kubota and Niki, 1971). Additional studies by Niki found WM-

selective neurons that were also selective for the absolute and relative spatial 

positions of the stimuli (and thus could be considered SWM-selective neurons), and 

responses (Niki, 1974a; 1974b; Niki and Watanabe, 1976), and additional studies by 

Fuster found that the activity of WM-selective neurons also reflected accuracy of 

performance and was attenuated by distracting stimuli. Subsequent studies 

corroborated these results (Batuev et al., 1979; 1980; Kojima and Goldman-Rakic, 

1982; 1984; Batuev et al., 1985), described temporal dynamics to the WM activity 

(e.g. ramping and decay), and also found similar signals in parietal cortex.  

 In 1989, Funahashi et al. recorded from the principal and arcuate regions of 

macaques while they performed an oculomotor delayed response (ODR) task, which 

has proven to be one of the most widely used tasks in SWM research (Figure 1.2).  
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Figure 1.2: Oculomotor delayed response (ODR) task. In this task, subjects first 
fixate on a central point (fixation epoch), then are presented with a cue (cue epoch) 
that disappears, followed by a delay (delay epoch), and finally the fixation point 
disappears, cuing the animal to saccade to the remembered location (saccade epoch). 
From (Constantinidis et al., 2001a). 

This study made a number of important discoveries: First, it found neurons that 

were tuned to precise locations in visual space (typically in the hemifield 

contralateral to the hemisphere being recorded from), in contrast to previous 

studies that used only a small number of stimuli; second, it found that this tuning 

was relatively parametric, in that the responses of a neuron to all the different 

stimulus locations could be approximated with a Gaussian function; finally, it 

demonstrated the existence of inhibitory delay epoch activity–neurons that fired 

significantly less during WM maintenance. 
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1.6 Beyond Working Memory: Sustained LPFC Activity Across Tasks 

Further experiments found neurons in LPFC that exhibit delay-epoch selectivity for 

nearly every feature of a WM task (e.g. object/sound identity, spatial position, motor 

act, behavioral relevance) (Passingham, 1993; Goldman-Rakic, 1995; Petrides, 

2000b; Courtney, 2004; Petrides, 2005a; Postle, 2006; Fuster, 2008; Funahashi, 

2013). Results implying the separation of object and spatial WM led Goldman-Rakic 

to propose that PFC is the neural substrate for the storage of WM, and different 

modalities are relegated to different anatomical sub-areas (Wilson et al., 1993; 

Goldman-Rakic, 1995). This seems like a clear, tangible definition, but it begins to 

wither when considering that the separation may have been the result of training 

the animals on object and spatial WM tasks at different times, and was not 

replicated when this issue was controlled for experimentally (Rao et al., 1997). 

Furthermore, the issue of how to dissociate different features to different cortical 

domains becomes increasingly untenable as one counts the “features” for which 

specific WM capabilities have been identified (e.g. color, motion, egocentric space, 

allocentric space, tactile stimuli, faces, animals… see (Postle, 2006) for a review). 

Postle proposes an alternative theory: WM is an emergent property of PFC, 

that the retention of information in WM is associated with sustained activity in the 
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same brain regions that are responsible for the representation of that information, 

and that the delay activity observed in PFC is better attributed to the maintenance 

of abstract behavioral goals or task rules (Postle, 2006). This reconciles studies that 

report signals in LPFC related to, among other things, motivation and reward 

expectancy, transformation/response preparation, and attention/selection, and 

integrates “WM” activity parsimoniously with Miller and Cohen’s model of PFC. 

Indeed, prior studies from my research group analyzed signals from the same 

arrays implanted in the same region in the same animals as the studies 

constituting my thesis, but the animals performed a change detection task that 

required sustained spatial attention (Tremblay et al., 2014; 2015). Thus the 

neuronal activity observed in LPFC during SWM tasks can be considered as the 

allocation of behavioral significance and computational resources to a specific region 

of visual space. 

1.7 Network Structure and Topographic Representation in 8a 

While Postle’s model of WM as an emergent phenomenon renders Goldman-Rakic’s 

proposition of domain-specific WM regions in PFC tenuous, her basic model of LPFC 

cellular network architecture is still well-supported (Goldman-Rakic, 1995; Kritzer 

and Goldman-Rakic, 1995; Goldman-Rakic, 1996; Rao et al., 1999). She proposed 
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that LPFC is organized in a microcolumnar manner, such that groups of cells 

within the same ~.7mm region share recurrent excitatory connections, while 

inhibitory connections to other microcolumns extend laterally up to 7mm (Figure 

1.3) (Goldman-Rakic, 1995; Kritzer and Goldman-Rakic, 1995; Goldman-Rakic, 

1996; Rao et al., 1999). Only the excitatory functional interactions predicted by this 

connection scheme have been observed, and only at distances of less than 2mm 

(Constantinidis and Goldman-Rakic, 2002; Constantinidis et al., 2002). It has been 

proposed that the sustained activity underlying WM maintenance is effected by 

increasing the strength of the recurrent excitation and lateral inhibition of these 

microcolumns (Amit and Brunel, 1997; Camperi and Wang, 1998; Compte et al., 

2000; Durstewitz et al., 2000; Wang, 2001; Constantinidis and Wang, 2004; 

Wimmer et al., 2014). 
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Figure 1.3: Model of LPFC network structure. Adapted from (Constantinidis and 
Wang, 2004). 

Goldman-Rakic also posited that these microcolumns were organized by 

spatial tuning, which seems implausibly rigid in light of the discussed evidence 

supporting a more modality-agnostic role for LPFC. But it remains a possibility that 

the microcolumns are organized by some less distinct or more flexible property. 

While most electrophysiological studies relate neurons’ functional properties to 

electrode penetration sites, few verify their claims statistically. Additionally, day-to-

day movement of the brain inside the skull makes functional localization with 

single electrodes less certain. Studies examining the functional topography and 

intrinsic network structure in 8a are scant (Suzuki and Azuma, 1983), likely due in 
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part to the inherent difficulty of providing concrete descriptions of a region that’s 

known for its flexibility and context sensitivity. 

1.8 Non-linear Representation of Visual Mnemonic Space 

Most SWM studies have parameterized visual space as either binary (e.g. left/right) 

or unidimensional (e.g. degrees of angle across the same eccentricity) (Funahashi 

and Kubota, 1994; Goldman-Rakic, 1995; Funahashi and Takeda, 2002). Although 

such studies have substantially advanced our understanding of SWM, they have 

also led to models that assume a continuous and/or homogenous representation of 

the visual field (Goldman-Rakic, 1995; Camperi and Wang, 1998; Compte et al., 

2000; Constantinidis and Wang, 2004; Wimmer et al., 2014). 

A number of behavioral and physiological studies examining WM capacity 

have demonstrated varying degrees of independence between the left and right 

visual hemifields (Vogel and Machizawa, 2004; Delvenne, 2005; Buschman et al., 

2011; Delvenne et al., 2011; Matsushima and Tanaka, 2014). However, these 

studies have treated visual space as a binary variable, restricting their ability to 

make conclusions about visual mnemonic space beyond that it is represented 

separately for each hemifield.  
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Psychophysical studies have revealed that maintaining visuospatial 

information in WM distorts it in consistent, stereotyped ways. Saccades to 

remembered target locations exhibit biases in their endpoint distributions, some of 

which are proportional to the length of the memory delay, but all of which vanish 

when saccade targets remain visible (White et al., 1994). The horizontal and vertical 

meridians of the visual field also appear to exert biases on the contents of spatial 

WM: remembered locations are repelled away from the meridians, towards the 

center of a quadrant (Huttenlocher et al., 1991; 2004; Merchant et al., 2004; Haun 

et al., 2005). These results suggest inhomogeneities in the representation of 

remembered locations across the visual field. 

Additional psychophysical research has shown that attentional capabilities 

seem to be somewhat independent for different visual hemifields (Alvarez et al., 

2012) and/or quadrants (Carlson et al., 2007; Liu et al., 2009), and that shifting the 

focus of attention across a meridian incurs a substantial reaction time penalty 

(Rizzolatti et al., 1987). If WM and attention are as similar as Postle’s model claims, 

then they should share similar constraints. Furthermore, considering that 

homogeneity of SWM representations is taken for granted, it is quite possible that 
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WM representations of visual space exhibit hemifield or quadrantic biases that have 

never been explicitly tested for. 

1.9 Beyond the Single Neuron 

Traditional neurophysiological experiments record the activity of a single neuron 

over many repetitions (or trials) of the same stimulus or behavioral condition. This 

activity is then averaged across trials to remove the trial-to-trial variability that is 

assumed to be extraneous noise. While this approach is the bedrock of 

neurophysiology and has yielded countless invaluable scientific insights, it has 

three major shortcomings: First, very few ecologically valid scenarios involve 

repeating many instances of the same action, using the repetitions to determine the 

prototypical representation of that action, and then accepting this prototype as the 

true outcome. The second shortcoming of serial recordings of individual neurons is 

that the neuronal computations underlying sophisticated behaviors such as WM 

require the coordinated activity of many neurons within and across brain networks 

(Quian Quiroga and Panzeri, 2009; Cunningham and Yu, 2014). The third 

shortcoming is that recording individual neurons separately and then aggregating 

them into a “pseudopopulation” of many neurons assumes that trial-to-trial 
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variability of each individual neuron is independent of the rest; this assumption is 

incorrect, and carries significant implications that will be discussed shortly.  

Researchers are not ignorant of these shortcomings. Technologies capable of 

recording the simultaneous activity of large neuronal populations in-vivo only 

became widely accessible to the neuroscience community in the 2000s. These 

advancements have created novel research opportunities for the field of 

neuroscience, which Cunngingham and Yu describe lucidly: 

These technological advances have enabled researchers to reconsider the types of 

scientific questions that are being posed and how neural activity is analyzed, even 

with classical behavioral tasks and in brain areas that have been studied for 

decades. Indeed, many studies of neural systems are undergoing a paradigm shift 

from single-neuron to population-level hypotheses and analyses…there are settings 

in which data fundamentally cannot be understood on a single-neuron basis 

(Cunningham and Yu, 2014). 

WM and the PFC are a prime example of a “classical behavioral task in [a] 

brain area that has been studied for decades”. The preponderance of 

electrophysiological studies discussed here relied on single electrode recordings. 

And while the 40+ years of research into the neuronal mechanisms of WM have 

been extremely informative, single electrode recordings are fundamentally limited 

in their ability to investigate phenomena that only exist in populations of neurons. 
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Our understanding of the ensemble-level mechanisms of WM and how single neuron 

coding properties scale to larger populations comes largely from theoretical 

modeling and speculation based on results from large-scale recordings in other 

brain regions and investigating other behaviors. 

One such prediction from modeling work is that the recurrent-excitatory 

lateral-inhibitory network structure thought to underlie WM maintenance should 

result in a stereotyped pattern of correlated firing rate variability between 

neurons—i.e. that the correlation in trial-to-trial variability between neurons 

changes depending on the relationship of the neurons’ tuning (Constantinidis and 

Wang, 2004; Polk et al., 2012). Such a pattern can be characterized by two 

measurements: The first is signal correlation (rsignal), a measure of the similarity of 

two neurons’ responses to a set of different stimuli or experimental conditions. The 

second is the spike count correlation (rsc; sometimes called noise correlation or spike 

rate correlation), which measures shared variability or co-fluctuation in firing rate 

between neurons that is not ascribable to changes in stimuli or behavioral 

conditions (Zohary et al., 1994; Averbeck et al., 2006; Cohen and Kohn, 2011). 

Formulae for these quantities are provided in the Methods sections of the relevant 

chapters. 
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1.10 Spike Count Correlations (rsc) 

rsc are often used to quanitfy functional connectivity (Cohen and Kohn, 2011), but 

they can also have a profound effect on the information content of a neuronal 

population, meaning that conclusions derived from analyses of pseudopopulations 

may be inaccurate (Shadlen and Newsome, 1994; Zohary et al., 1994; Shadlen and 

Newsome, 1998; Averbeck et al., 2006; Cohen and Kohn, 2011; Moreno-Bote et al., 

2014) (Figure 1.4).  

Figure 1.4: Effects of rsc on decoding in a two-neuron example model. A) The firing 
rate of neuron 1 (x-axis) is plotted against the firing rate of neuron 2 (y-axis). The 
marginal distributions of firing rates for each neuron in response to each of two 
stimuli (pink vs. blue) are plotted along each axis. The smaller colored dots 
represent the firing rates for single trials, while the two larger dots represent the 
mean responses to the pink and blue stimuli. In this example, the variability of the 
two neurons’ responses is uncorrelated (i.e. rsc = 0). The dashed line denotes the 
optimal boundary for decoding the identity of the stimulus using the activity of the 
two neurons, and the joint firing rate distributions for each of the two stimuli as 



Chapter 1. Introduction, Literature Review, and Aims 

 24 

projected along the discrimination boundary are shown at the top right. B) Same 
format as A), but the rsc between the two neurons has changed to impair decoding, 
visible as the increased overlap of the joint distributions. Note that the mean 
responses and marginal distributions are identical to A). C) Same format as B), but 
the rsc between the two neurons has changed to improve decoding. Again, the mean 
responses and marginal distributions remain identical to the previous examples. 

In some circumstances, rsc can impose a limit on the amount of information 

that can be represented in a neuronal population; beyond a certain number of 

neurons, adding additional neurons will not improve the capabilities of the 

population (Zohary et al., 1994). Another example of the importance of rsc comes 

from studies of visual attention. The improvements in behavioral performance 

effected by visual attention were once thought to result from improvements in the 

signal-to-noise ratio of the firing rates of individual neurons in visual cortex 

(Reynolds and Chelazzi, 2004). However, recent studies have shown that the 

majority of the signal-to-noise improvement in the neuronal population comes from 

changes in rsc (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, these 

results provide limited insight into the effects of rsc on WM coding in the PFC. This 

issue is of particular importance. Tuning-dependent changes in rsc are predicted by 

the recurrent-excitatory lateral-inhibitory model of WM maintenance, but given 

that rsc can dramatically influence neuronal coding, it is possible that the pattern of 

rsc generated by WM maintenance could affect the coding of the information 
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maintained in WM. Unfortunately, there are relatively few studies investigating rsc 

in the LPFC, and none that directly examine the effects of rsc on WM coding 

(Constantinidis et al., 2001a; Constantinidis and Goldman-Rakic, 2002; Cohen and 

Kohn, 2011; Qi and Constantinidis, 2012; Katsuki et al., 2014; Tremblay et al., 

2014; Markowitz et al., 2015). Previous studies of pairwise correlations are also 

difficult to extrapolate to larger neuronal ensembles, which have a complex, 

multidimensional rsc structure (n!/(2(n–2)!) pairs of neurons) that is insufficiently 

characterized by pairwise measurements alone (e.g. the mean rsc) (Moreno-Bote et 

al., 2014). Thus it is currently unknown whether and how the rsc structure 

modulates the fidelity of WM coding in LPFC neuronal ensembles. 

1.11 Research Aims 

Having provided a background on non-human primate working memory research 

and identified open questions in the field, I now present the primary aims of my 

research program: 

Aim 1: Determine how ensembles of simultaneously-recorded neurons in LPFC area 

8a represent SWM, and how it differs from single neuron representations. 

Electrophysiological research has traditionally relied on recording from single (or a 

few) neurons at once, thus we are largely ignorant of the network properties 
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underlying SWM, and how it is represented by the coordinated activity of neuronal 

ensembles in LPFC area 8a. Complex neural computations are enacted through the 

interactions of many neurons in and across networks (Dayan and Abbott, 2001; 

Quian Quiroga and Panzeri, 2009), thus we expected to observe properties that exist 

in simultaneously-recorded neural ensembles that are not visible in 

pseudopopulations. Specifically, we expected to observe changes in the ensemble rsc 

structure resulting from the modulation of recurrent excitation and lateral 

inhibition predicted by models of LPFC structure and WM maintenance 

(Constantinidis and Wang, 2004; Polk et al., 2012). We also expected that the 

pattern of rsc should influence the fidelity of ensemble WM representations. 

Aim 2: Determine the magnitude and spatial scale of functional interactions in 

LPFC in the absence of stimulus input. 

Based on the proposed network model of LPFC (Goldman-Rakic, 1995; 2011), we 

expected that functional interactions between neurons in 8a extend beyond the 

previously measured range of 1mm, and should reflect the presence of both 

excitatory and inhibitory connections between neurons, as measured using rsc. 

Aim 3: Quantify whether functional (i.e. task-related) properties of neurons in LPFC 

exhibit topography. 
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Abundant examples of topographic organization in other brain regions, theoretical 

models of LPFC structure (Goldman-Rakic, 1995), and qualitative reports of such 

organization in 8a (Suzuki and Azuma, 1983) led us to hypothesize that quantifiable 

topography should be present. Recording from larger neuronal ensembles and 

across broader areas of cortex could reveal functional topography in area 8a that 

had so far remained elusive. 

Aim 4: Examine whether neuronal tuning for visual space during WM is biased by 

the meridians of the visual field. 

Given the psychophysical literature on biases in SWM (Huttenlocher et al., 1991; 

2004; Merchant et al., 2004; Haun et al., 2005), the relative hemifield-independence 

of WM capacity (Vogel and Machizawa, 2004; Delvenne, 2005; Buschman et al., 

2011; Delvenne et al., 2011; Matsushima and Tanaka, 2014), the similarity between 

SWM and spatial attention (Miller and Cohen, 2001; Postle, 2006; Theeuwes et al., 

2009; Smith and Schenk, 2012), and the independence of attentional resources 

across hemifields and/or quadrants, we hypothesized that SWM representations 

should be biased by quadrants/meridians of the visual field. Specifically, 

representations of locations within a quadrant should be more similar than 

equidistant representations across quadrants. 
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 In order to address these aims, we used 96-channel microelectrode arrays 

(Figure 1.5; (Maynard et al., 1997; Normann et al., 1999)) to record from ensembles 

of LPFC area 8a neurons in two Macaca fascicularis monkeys while they performed 

two different tasks. These recordings constitute the basis of three separate 

experiments, each of which constitutes a chapter in this thesis. 

 

Figure 1.5: 96-channel Utah microelectrode array. This array is chronically 
implanted subdurally in order to record the spiking activity (i.e. action potentials) of 
large numbers of neurons simultaneously. Its capacity for large-scale simultaneous 
recordings makes it particularly well-suited for examining ensemble-level 
phenomena. Image courtesy of (Jones, 2009). 

 The first experiment addresses Aim 2, determining the magnitude and 

spatial scale of functional interactions in LPFC in the absence of stimulus input. In 

this experiment we determined the tuning properties of area 8a neuron during a 

simple visually-guided saccade task. We then examined the relationship between 
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neurons’ tuning and rsc during fixation, prior to the presentation of visual stimuli. 

We found that rsc decreased as a function of distance between neurons, positive rsc 

were stronger between similarly-tuned neurons, and negative rsc were stronger 

between dissimilarly-tuned neurons. Most importantly, we found that rsc between 

anatomically distant (>3mm) neurons with dissimilar tuning were predominantly 

negative, suggestive of tonic resting-state inhibition. This pattern of intrinsic 

functional connectivity supports the model of a recurrent-excitatory lateral-

inhibitory network structure in LPFC. 

 Experiment 2 was designed to address three aims: Aim 1, to determine how 

ensembles of simultaneously-recorded neurons in LPFC area 8a represent SWM, 

and how it differs from single neuron representations; Aim 3, quantifying whether 

functional (i.e. task-related) properties of neurons in LPFC exhibit topography; and 

Aim 4, to examine whether neuronal tuning for visual space during WM is biased by 

the meridians of the visual field. In this experiment the animals performed an 

oculomotor delayed-response (ODR) task. We found that neuronal SWM 

representations were asymmetrically biased not to extend beyond the meridians of 

the visual field field. This bias is present at multiple levels of examination: in single 

neuron firing rates, the rsc structure, and neuronal ensemble representations. The 
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subjects’ saccades also exhibited similar biases to those reported in the 

psychophysical literature. These results could be considered neuronal correlates of 

known biases in WM-based judgments of visual space. We also found that LPFC 

neurons are anatomically clustered in a non-retinotopic manner that partially 

reflects the organization of visual space.  

 The final experiment addressed Aim 1, determining how ensembles of 

simultaneously-recorded neurons in LPFC area 8a represent SWM and how it 

differs from single neuron representations, and Aim 3, quantifying whether 

functional (i.e. task-related) properties of neurons in LPFC exhibit topography. This 

experiment utilized the same ODR task as Experiment 2. We found that WM 

maintenance modulated the rsc structure in manner indicative of increased coupling 

between similarly-tuned neurons and increased inhibition between dissimilarly-

tuned neurons. We then examined the effects of the rsc structure on WM coding, and 

found that it could facilitate or impair the readout of WM representations, 

depending on the size of the ensemble and tuning properties of its constituent 

neurons. Interestingly, ensembles of neurons that contained the most robust SWM 

representations were more anatomically dispersed than predicted by the statistics 

of the full recorded population of neurons. Finally, we found neurons that contained 
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little WM information when examined in isolation, but contributed to coding when 

part of an ensemble by shaping the ensemble’s rsc structure. This final result is a 

powerful example of a phenomenon that is inaccessible in individually-recorded 

neurons, and emphasizes the importance of multi-neuron recordings for elucidating 

the neuronal mechanisms of cognition. 
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CHAPTER 2  
SPIKE COUNT CORRELATION STRUCTURE REVEALS 

INTRINSIC FUNCTIONAL TOPOGRAPHY IN PRIMATE 

PREFRONTAL CORTEX AREA 8A 
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Anatomical studies indicate that neurons in dlPFC are arranged in recurrent 

excitatory microcolumns of approximately 0.7mm, while lateral connections 

between neurons can extend up to 7mm. Prior experiments have shown that 

functional connectivity in dlPFC, as measured using spike count correlations (rsc), 

extends up to 1 mm. The goal of this study was to examine the pattern of rsc 

between neurons across larger distances. The results demonstrate a pattern of rsc 

indicative of a recurrent excitatory, lateral inhibitory network structure. This 

chapter is adapted from Leavitt, M., Pieper, F., Sachs, A., Joober, R., Martinez-

Trujillo, J.C. (2013) Structure of spike count correlations reveals functional 

interactions between neurons in dorsolateral prefrontal cortex area 8a of behaving 

primates, PLoS ONE, 8(4): e61503. 
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2.1 Abstract 

Neurons within the primate dorsolateral prefrontal cortex (dlPFC) are clustered in 

microcolumns according to their visuospatial tuning. One issue that remains poorly 

investigated is how this anatomical arrangement influences functional interactions 

between neurons during behavior. To investigate this question we implanted 4 mm 

× 4 mm multielectrode arrays in two macaques’ dlPFC area 8a and measured spike 

count correlations (rsc) between responses of simultaneously recorded neurons when 

animals maintained stationary gaze. Positive and negative rsc were significantly 

higher than predicted by chance across a wide range of inter-neuron distances (from 

0.4 to 4 mm). Positive rsc were stronger between neurons with receptive fields (RFs) 

separated by ≤90° of angular distance and progressively decreased as a function of 

inter-neuron physical distance. Negative rsc were stronger between neurons with 

RFs separated by >90° and increased as a function of inter-neuron distance. Our 

results show that short- and long-range functional interactions between dlPFC 

neurons depend on the physical distance between them and the relationship 

between their visuospatial tuning preferences. Neurons with similar visuospatial 

tuning show positive rsc that decay with inter-neuron distance, suggestive of 

excitatory interactions within and between adjacent microcolumns. Neurons with 
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dissimilar tuning from spatially segregated microcolumns show negative rsc that 

increase with inter-neuron distance, suggestive of inhibitory interactions. This 

pattern of results shows that functional interactions between prefrontal neurons 

closely follow the pattern of connectivity reported in anatomical studies. Such 

interactions may be important for the role of the prefrontal cortex in the allocation 

of attention to targets in the presence of competing distracters. 

2.2 Introduction 

Neurons in the primate dorsolateral prefrontal cortex (dlPFC) are arranged in 

microcolumns spanning approximately 0.7 mm, wherein neurons with similar 

visuospatial tuning are interconnected with one another (Kritzer and Goldman-

Rakic, 1995; Rao et al., 1999). This intrinsic connectivity pattern is thought to allow 

neurons to functionally interact with one another during behavior. However, 

measuring such interactions is challenging because one must simultaneously record 

the responses of multiple dlPFC neurons in behaving primates and compute 

measurements of functional interactions between them in behaving primates.    

One commonly used measurement in primate electrophysiological studies is 

the Pearson’s correlation coefficient (r), computed between the firing rates of two 

simultaneously recorded neurons over many trials (Bair et al., 2001). When r is 
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computed between neuronal responses over many trials of the same behavioral 

condition (noise correlations or rsc), it provides a measurement of functional 

interactions between two units, which can be due to shared sensory inputs. In the 

absence of sensory inputs, rsc could provide a measurement of functional 

connectivity between neurons (Palm et al., 1988; Zohary et al., 1994; Shadlen and 

Newsome, 1998; Averbeck et al., 2006). Previous studies have measured rsc in 

several cortical areas of the macaque brain and reported a variety of results. In the 

visual cortex, it seems to be acknowledged that rsc can hinder visual coding, and that 

cognitive variables such as attention can decrease rsc (reviewed in (Cohen and Kohn, 

2011)). In prefrontal neurons, however, this picture is less clear. One study in the 

frontal eye fields (FEF), a prefrontal area involved in the coding of gaze commands, 

has proposed that rsc may reflect cooperation and competition between neurons 

within a network during cognitive tasks such as target selection (Cohen et al., 

2010). However, the topography of such interactions and their dependence on 

sensory input into neurons have not been well documented.  

A previous study used single electrodes to record the responses of dlPFC 

neurons and reported positively correlated firing during different periods of a 

delayed-match-to-sample task (Constantinidis and Goldman-Rakic, 2002). The rsc 



Chapter 2.  Spike Count Correlation Topography in Area 8a 

 37 

decreased with the distance between neurons and did not change during the 

different task periods. However, they did not explore inter-neuron distances larger 

than 1 mm. Two other studies recorded from the same region have reported similar 

results (Sakurai and Takahashi, 2006; Tsujimoto et al., 2008). Although these 

results have revealed that dlPFC neurons functionally interact with one another 

during behavior, they have also generated important questions. First, over what 

distances do interactions between dlPFC neurons occur? For example, it is known 

that microcortical columns in the dlPFC span over a range of ~0.7 mm but the 

pattern of collateral connections between dlPFC neurons could extend as far as 7 

mm (Kritzer and Goldman-Rakic, 1995). The results reported by previous studies 

exploring distances below 1 mm could likely account for interactions between 

neurons within a microcolumn, but not between microcolumns. According to the 

pattern of collateral connections, one would anticipate that correlated firing would 

extend beyond 1 mm. Second, if neurons within the dlPFC interact through both 

excitatory and inhibitory connections, as suggested by models of the dlPFC circuitry 

(Wang et al., 2004), one would anticipate finding both positive and negative 

correlations. With the exception of one report (Constantinidis et al., 2002), which 

also limited their exploration of functional interactions to neurons located 0.2 to 0.3 
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mm apart, most studies have mainly reported positive rsc. Third, the aforementioned 

studies used single electrodes and in some cases computed rsc between units 

recorded from the same electrode and/or over a few number of trials. Thus, it is 

possible that these factors influenced the measured rsc (Cohen and Kohn, 2011). 

In order to investigate these and other related questions, we implanted a 

microelectrode array in dlPFC area 8a of two macaques and simultaneously 

recorded the activity of many neurons while the animals kept stationary gaze and 

waited for the presentation of a visual stimulus. By collecting a large number of 

trials in the absence of visual inputs into the neurons’ RFs, we controlled for 

common sensory inputs into the units as the source of rsc. We found that both 

positive and negative correlations were larger than predicted by chance over a wide 

range of inter-neuron distances (from 0.4 to 4 mm). Positive correlations were 

stronger between nearby neurons with visual RFs at similar locations and 

decreased progressively for neurons farther apart—up to the largest recorded 

distance of 4 mm. Most importantly, negative correlations were stronger between 

neurons with dissimilar RF locations and increased as the distance between the 

units increased. 
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2.3 Methods 

We recorded the responses of neurons in the dlPFC of two behaving adult male 

Macaca fascicularis (“JL” and “F”).  

2.3.1 Ethics Statement 

All the experimental procedures were carried out in accordance with Canadian 

Council for Animal Care guidelines and were pre-approved by the McGill University 

Animal Care Committee. Animals were pair-housed in enclosures and interactive 

environmental stimuli were provided for enrichment. During experimental days, 

water was restricted to a minimum of 35ml/kg/day, which they could earn through 

successful performance of the task. Water intake was supplemented to reach this 

quantity if it was not achieved during the task, and water restriction was lifted 

during non-experimental days. The animals were also provided fresh fruits and 

vegetables daily. Body weight, water intake, and mental and physical hygiene were 

monitored daily. Blood cell count, hematocrit, hemoglobin, and kidney function were 

tested quarterly. If animals exhibited discomfort or illness, the experiment was 

stopped and resumed only after successful treatment and recovery. All surgical 

procedures were performed under general anesthesia. None of the animals were 

sacrificed for the purpose of this experiment. 



Chapter 2. Spike Count Correlation Topography in Area 8a 

 40 

2.3.2 Task 

A custom computer program controlled the stimulus presentation and monitored 

eye position signals and behavioral responses. The animal initiated a trial by 

maintaining gaze within 2° on a central fixation spot (0.08 degrees2) and pressing a 

lever; fixation needed to be maintained until the end of a trial. After 650 ms of 

fixation, a sine-wave grating (2.5 Hz/deg, 1° diameter, vertical orientation) appeared 

at one of 40 locations (8 directions in 45˚-steps, 5 eccentricities in 3˚-steps), selected 

randomly, for 650 ms. After that period, the fixation spot disappeared and the 

animal had 600 ms to saccade toward the grating (Figure 2.1A). If the saccade 

landed on the grating, the animal received a juice reward and could initiate the next 

trial after 1 second. Fixation breaks during the trial or failure to saccade to the 

target resulted in immediate trial abortion without reward. 

2.3.3 Apparatus and recording procedures 

Prior to the experiments, the animals were implanted with 3 head-posts—one 

placed posterior to the supra-orbital ridge in the midline and the other two on the 

petrosal bones superior to the external occipital protuberance behind the left and 

right ears, respectively. The head posts interfaced with a head holder to fix the 

monkeys’ heads to the chair during the recordings. Eye-positions were monitored 
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using an infrared video-based eye-tracker (EyeLink 1000, SR Research, Ontario, 

Canada) (Khayat et al., 2010). 

 

Figure 2.1: Locations of microelectrode array (MEA) implantations, task design, and 
correlation pairs on the MEA. A) Time-course of events during an example trial. 
The grey window indicates the screen, the white dot the fixation spot, the squares 
the positions of the grating, the white circles the fixation-window, and the arrow the 
subject’s saccade. B) Pictures of the MEA implantation positions. Photographs were 
taken during the implantation procedure in monkeys ‘F’ and ‘JL’. Principal and 
arcuate sulci are indicated. C) 32-channel recording blocks (‘A’, ‘B’, ‘C’) in each of the 
two implanted MEAs. Each square represents an electrode. Black squares are not 
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connected (‘NC’). Red dots indicate single units and colored lines represent 
correlation pairings. 

2.3.4 Microelectrode array (MEA) implant 

We chronically implanted a 10×10 MEA (Blackrock Microsystems LLC, Utah, USA) 

(Maynard et al., 1997; Normann et al., 1999) in each monkey’s left dlPFC—anterior 

to the knee of the arcuate sulcus and caudal to the posterior end of the principal 

sulcus (area 8a) (Figure 2.1B). Shortly, the surgical operation was carried out under 

general anesthesia with endotracheal intubation. An incision was made on the scalp 

with a scalpel and electrocautery. The scalp was retracted and the pericranium 

excised to limit biological reaction around the implant. A craniotomy was then 

fashioned using a high power drill (Anspach, FL, USA) over the desired implant 

location. Wet gelfoam was applied to the epidural edges for hemostasis. The array 

connector was fixed to the skull with cranial screws and the wires to the arrays 

were bent appropriately. The wire was secured in place with Silastic (silicon 

polymer, World Precision Instruments, FL, USA). The dura was opened with a #11 

blade and Reynold scissors, and then tacked back with 4-0 vicryl sutures.  

After exposure of the brain, the array was placed on the cortical surface and an 

array gun (Blackrock Microsystems LLC, Utah, USA) was set up in a stereotactic 
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frame. Once properly aligned, the gun was fired, pushing the array ~1 mm into the 

cortex. A duroplasty was then done using synthetic dura (Durepair, Medtronic, Inc. 

Minneapolis, MN, USA), and the bone flap (preserved in saline after the 

craniotomy) was replaced and secured back using cranial fixation plates and screws 

(Synthes, Inc. PA, USA). Gaps in the bone were filled with Silastic and the scalp 

was released from retraction. A small incision was made in the scalp over the 

connector, to allow the connector to be percutaneous.  The scalp was closed in layers 

with buried vicryl sutures in the galea and staples to the skin. The animal fully 

recovered from the surgery within one week.  

2.3.5 Recordings and spike detection 

Data were recorded using a Cerebus Neuronal Signal Processor (Blackrock 

Microsystems LLC, Utah, USA) via a Cereport adapter. After 1x amplification in 

the headstage (ICS-96), the neuronal signal was band-pass filtered (0.3 Hz/1-pole, 

7.5 kHz/3-pole, analog) and digitized (16 bit, 1µV per bit) at a sample rate of 30 

kHz. Spike waveforms were detected by thresholding (manually adjusted to ~ -4 to -

4.5x noise amplitude) the digitally high-pass filtered (250 Hz/4-pole or 750 Hz/4-

pole) raw data. 
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The extracted spikes (48 samples at 30 kHz, ~1.6 ms) were re-sorted in 

OfflineSorter (Plexon, USA) using a T-Distribution E-M Algorithm in 3-dimensional 

feature space (Plexon Inc, TX). Only re-sorted spikes of single-neurons 

distinguishable from the multiunit cluster were included in the analysis. The 

electrodes on each MEA were separated by at least 0.4 mm and were organized into 

three blocks of 32 electrodes (A, B, C). Data were collected from one block during 

each recording session. 

 In order to obtain an estimate of the signal-to-noise ratio (separation of the 

spikes from the background noise) in our recordings, we computed a d’ index for the 

distribution of spikes corresponding to each neuron and the associated noise 

(Equation 1). 

  (1) 

The peak is the minimum/maximum voltage of a given spike distribution, and 

the baseline is the voltage at the spike onset (noise)—before the first deflection of 

the waveform (Figure 2.2A). Two d’ measurements were computed for the first 

(negative) and second (positive) peaks of the spike waveform. The two were added to 
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obtain a global d’ measurement of the distance between the peaks and baseline in 

standard deviation units of the latter (Figure 2.2B). 

 

Figure 2.2: Example neuron and population signal-to-noise and selectivity. A) 
Example average waveform from a recorded neuron (solid line). The abscissa 
represents time from when the threshold was crossed in microseconds (µs), the 
ordinate signal amplitude in µV, and the thin lines the standard deviation across 
waveforms. Rectangles represent the time windows used to measure the standard 
deviations and to compute d’ (see Methods). B) Histogram of d’ distribution across 
all single-units. C) Examples of units’ response (spike density function; σ = 50 ms) 
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across the different time periods of the task and with different stimulus angular 
positions (color scale). The gray background indicates the analyzed trial period. The 
stimulus was presented at 650 ms, the “go” cue was presented at 1300 ms, and 
saccades were initiated at or after 1500 ms. 

2.3.6 Estimation of inter-electrode distance 

For electrodes located in the same column or row the interelectrode distance was 

computed by multiplying the length of a grid segment (0.4 mm) by the number of 

segments in between the electrodes. For electrodes located in different rows or 

columns, the Euclidean distance was computed (Figure 2.1C).  

2.3.7 Data analysis 

We collected spike data from a total of 163 single neurons (60 in JL, 103 in F) across 

6 recording sessions (3 in JL, 3 in F)—one session in each of the MEA’s 3 electrode 

blocks. Neurons with a firing rate of less than 0.1 spikes/second during the 500 ms 

analyzed period were excluded from the analysis (n = 39), yielding a total of 124 

single neurons (34 in JL, 90 in F). We then combined data in the 500 ms period 

preceding stimulus onset from all correct trials. During this period the animal had 

no information about the upcoming stimulus position and gaze was stationary. We 

assume that the behavioral state was identical across all trials and the animal was 

expecting the target onset. Furthermore, the absence of visual stimulation (except 
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for the fixation point, which was the same across trials) and measurable eye 

movements during that period rule out common visual input into the neurons as the 

source of spike count correlations. Next, we grouped units into simultaneously 

recorded pairs (n=2003) and computed Pearson’s correlation coefficients (rsc) 

between the z-scores of the units’ spike counts (Ecker et al., 2010). In addition, we 

minimized the risk of falsely inflating the correlation values by excluding 

correlations between units on the same electrode (n = 51) from analysis (Ecker et 

al., 2010; Cohen and Kohn, 2011). These exclusion criteria yielded 1952 correlation 

pairs for analysis. Fisher’s r-to-z transformation was applied to the correlation 

coefficients in order to stabilize the variance for hypothesis testing. 

2.3.8 Visuospatial tuning 

In order to determine whether a unit was visuospatially tuned for stimulus location, 

we first computed the mean firing rate for each target location during the 500 ms 

following the visual stimulus onset. We collected an average of 1010 trials per 

session (lower limit: 380; upper limit: 1300). We fitted the response data (i.e., mean 

firing rates) with a circular Gaussian function (Equation 2) and computed the 

goodness of fit (r2) for each eccentricity (Treue and Martinez-Trujillo, 1999). 



Chapter 2. Spike Count Correlation Topography in Area 8a 

 48 

 
 (2) 

R(θ) is firing rate at target angular position θ. The parameters B, A, φ, and σ 

represent the baseline, height, preferred target position and tuning width, 

respectively. We also computed a selectivity index (Equation 3) for each neuron. 

  (3) 

frpreferred is the maximum firing rate evoked by a target and frantipreferred is the 

minimum firing rate evoked by a target. Neurons were classified as visuospatially 

tuned for the target position if the adjusted r2 of the fit was ≥0.75 and the selectivity 

index was ≥ 0.5.  

We collapsed across eccentricities, as an ANOVA did not show an effect of 

eccentricity between neurons with similar (≤ 15°) angular tuning preferences (p = 

0.740). 

2.3.9 Control simulations 

Variables such as firing rate may affect rsc (Cohen and Kohn, 2011). As such, we 

obtained estimates of rsc between simulated (independently homogeneously firing) 

Poisson neurons using the method described in (Heeger, 2000) to serve as a control 
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comparison. Briefly, the instantaneous firing rate of a neuron during a 500 ms 

duration trial was modeled as follows: a) time was subdivided into intervals of ∂t = 1 

ms, b) each interval duration was multiplied by the desired mean firing rate R 

(∂t×R) to generate 500 identical values (for each Poisson neuron, R was estimated 

according to the firing rate of a matching recorded neuron), c) a sequence of 500 

random values (X(i)) from a uniform distribution between 0 and 1 was generated, 

and d) if X(i) ≤ ∂t×R the instantaneous firing rate was set to 1, otherwise it was set 

to 0. For each neuron, we generated 500 spike trains of 500 ms duration each. This 

simulation produced a Poisson “mirror” neuron with the same firing frequency as 

the corresponding recorded neuron. When performing analysis on visuospatially-

tuned neurons, the corresponding Poisson neurons were used for comparison. 

Correlations between pairs of Poisson neurons were also computed to obtain a 

measurement of correlations due to chance (rsc,p).  

2.4 Results 

We analyzed neuronal activity during the 500 ms period preceding the visual 

stimulus onset (Figure 2.1A). This time period was chosen because: a) it allows 

measuring of spiking activity during periods of low firing in most of our units 

during many trials, b) it ensures a common visual input into the neurons RF is not 
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the source of correlated firing, and c) we could compare our results with the ones 

reported by previous studies in the same area (Constantinidis and Goldman-Rakic, 

2002). In animal F spikes were isolated in 70 out of 96 active electrodes (82%), and 

in animal JL in 52 out of 96 active electrodes (54%) (Figure 2.1C). The estimated 

signal-to-noise ratio (d’) in the included neurons (n = 163) was 8.2±1.8 SD (see 

methods and Figure 2.2A, B).   

The majority of the recorded neurons showed low spike rates preceding the 

target onset (Figure 2.2C). Some units showed an increase in firing rate when the 

visual target appeared at certain locations (left panel), while others did not (right 

panel). Similar response profiles have been previously described in prefrontal 

neurons (Takeda and Funahashi, 2002).  

A representative example of rsc (n = 1024 trials) between the firing rate of two 

units is illustrated in Figure 2.3A. Both units exhibit spike rates between 5 and 20 

spikes per second. The bottom abscissa and left ordinate illustrate the actual firing 

rates, and the top abscissa and right ordinate show the corresponding z-

transformed rates. For these two units, the estimated rsc was 0.08 and was 

significantly different from zero (see Methods, p = 0.009, t-test). We followed the 

same procedure for each one of the recorded units. The mean of all Fisher-
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transformed correlations (Figure 2.3B, red histogram) is significantly larger than 

zero (mean rsc,all = 0.031, p < 0.001, t-test). The mean chance correlation (blue 

histogram) was not significantly different from zero (rsc,p = 3.0×10-5, p = 0.958, t-test; 

Figure 2.3B, bottom panel) and was significantly smaller than rsc,all (p < 0.001, t-

test, Bonferroni corrected). This shows that rsc,all in our sample was higher than 

expected by chance.  
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Figure 2.3: Spike count correlation (rsc) example and population statistics. A) 
Example correlation between the responses of two neurons. The left x-axis and 
bottom y-axis represent the absolute number of spikes fired by each neuron in 
simultaneously recorded trials. The right x-axis and top y-axis show the z-
transformed data. The color scale represents coincidences of spike counts. B) 
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Histograms displaying the distribution of Fisher-transformed spike count 
correlations in the recorded data (red) and in the Poisson simulated neurons (blue). 
The arrows indicate the means of the distributions. C) Distribution of correlations 
and neurons on the MEA from animal ‘F’. Each square represents an electrode, and 
each line represents a correlation between two neurons recorded on the constituent 
electrodes. The thickness of a line is proportional to the magnitude of the 
correlation (from 0.055 to 0.55) and the color represents the sign (brown = negative, 
green = positive). The panel on the left illustrates significant correlations from the 
recorded data (rsc), while the right panel illustrates significant correlations 
occurring by chance (rsc,p). D) The proportion of significant positive and negative 
correlations for the data shown in C. Observe that the ordinate of the negative 
correlations is inverted for a better comparison of the correlation magnitudes. 

In order to better visualize the rsc between different neurons in the MEA, we 

plotted the position of each unit as it was recorded on the MEA and joined 

significantly correlated pairs of neurons with a line. We then grouped the rsc by 

sign—into positive and negative. Figure 2.3C illustrates rsc,all (left) and rsc,p (right) in 

three example networks recorded during different sessions (beige, yellow, and light 

brown backgrounds in the MEA layout). The proportion of significant positive rsc 

was significantly larger than that observed by chance (0.250 vs. 0.029; p < 0.001, 

chi-square test, Bonferroni corrected). Interestingly, the proportion of significant 

negative rsc was also significantly larger than predicted by chance (0.066 vs. 0.020; p 

< 0.001, chi-square test, Bonferroni corrected) (Figure 2.3D, bar graph). The 

proportion of positive rsc was also significantly larger than the proportion of negative 
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rsc (p < 0.001, difference of proportions from the same survey, Bonferroni corrected 

(Scott and Seber, 1983)). 

2.4.1 Influence of distance between neurons and tuning properties on rsc 

Previous studies have found that for prefrontal neurons separated by less than 1 

mm, the distance between them (inter-neuron distance) influences rsc during periods 

of fixation (Constantinidis and Goldman-Rakic, 2002). Here, we examined whether 

this result can be generalized to longer distances. Indeed, after discretizing the 

distances into 0.5 mm bins, we found a significant decrease in mean rsc with 

increasing inter-neuron distance (p < 0.001, F-test, see equation of the line fit to the 

data in Figure 2.4A). Additionally, we examined whether the proportion of 

significantly correlated pairs changed as a function of distance (Figure 2.4B). For 

this analysis, we again divided the significantly correlated units by the sign of the 

correlation. We observed a significant decrease in the proportion of significant 

positively correlated pairs as distance increased (p = 0.019, F-test, see linear 

equation and green dashed line in Figure 2.4B, top plot). For negative rsc, the 

proportion of significantly correlated pairs did not change as a function of distance 

between neurons (p = 0.876, F-test see linear equation and brown dashed line in 

Figure 2.4B, bottom plot). 
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Figure 2.4: Spike count correlations between all neurons as a function of distance 
between neurons. A) Distribution of Fisher-transformed rsc for all correlations 
(ordinate) as a function of distance between neurons (abscissa). Each bar indicates 
the median (red line), the box indicates the center 50%, and the whiskers extend to 
approximately ±2.7σ. Crosses indicate outliers beyond this interval. The green line 
and equation represent the best line fit through the data. The 95% confidence 
intervals for the slope are indicated. The total number of pairs is shown on the top 
B) Proportion of significant positive and negative correlations as a function of 
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distance between units for rsc (see legend). The green and red lines represent best-fit 
lines for these proportions. The equations for the two lines and 95% confidence 
intervals for the slopes are shown. There is a significant negative effect of distance 
on the proportion of significant positive correlations, and no significant effect of 
distance on the proportion of significant negative correlations (p = 0.019 and p = 
0.876, respectively, F-test for both). The colored regions indicate the 95% confidence 
intervals for the proportions. The total number of pairs is shown on the top. 

Another variable that may affect spike count correlations between neurons is 

their tuning for the stimulus position (Constantinidis and Goldman-Rakic, 2002). To 

examine this issue we divided our sample into neurons tuned for the position at 

which the stimulus would later appear, and untuned neurons (see Methods). We 

then organized the neuronal pairs into three categories: a) both neurons were 

tuned, b) one neuron was tuned, and c) neither neuron was tuned. Correlations 

between tuned pairs were further subdivided by angular difference in preferred 

stimulus location (RF location): a) neurons with a difference in RF location of either 

≤90° (‘similar’ preference group) or b) >90° (‘dissimilar’ preference group). Figure 

2.5A-E depict the same example networks from Figure 2.3 decomposed using these 

two criteria (large panels). At least three main observations can be made in Figure 

2.5: First, the amount of significant rsc is larger when at least one neuron of a 

correlation pair is tuned relative to when both neurons are not visuospatially tuned. 

Second, the amount of significant rsc in tuned neurons decreases for neurons with 
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distant RF locations (large panels in first column). Third, there are fewer 

correlations expected by chance than the quantity observed in the sample (small 

panels nearby the large ones). 

Figure 2.5: Spike count correlations sorted by neurons’ visuospatial tuning 
preferences. Like Figure 2.3, correlations are visualized on the MEA. Each square 
represents an electrode, and lines between the electrodes represent correlations 
between neurons recorded on those electrodes. The thickness of the line is 
proportional to the magnitude of the correlation (from 0.055 to 0.55) and the color 
represents the sign (brown = negative, green = positive). The large panels represent 
rsc and the small panels rsc,p. The row displays data from A) tuned-tuned, B) tuned-
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untuned, and C) untuned-untuned pairs. The column displays data from A) all 
tuned pairs, D) tuned pairs with RFs separated by less than or 90°, and E) RFs 
separated by more than 90° (bottom). F) The bar graph displays the proportion of 
significant correlations for all the tuned-tuned pairs (see legend). 

The mean spike count correlation between tuned units (rsc,tuned) was 

significantly larger than in the entire sample (rsc,all = 0.031, rsc,tuned = 0.050, p < 0.001, 

t-test, Bonferroni corrected). This finding was not due to significant differences in 

firing rate between tuned neurons and the whole population (la Rocha et al., 2007) 

during the analyzed period (p = 0.706, t-test). Thus, we concentrated on the subset 

of correlations in which both neurons were tuned (rsc,tuned). In this group the mean 

rsc,tuned was significantly larger than that predicted by chance (rsc,tuned = 0.050, rsc,tuned,p 

= 0.0002, p < 0.001, t-test, Bonferroni corrected).  

When separating the tuned pairs based on difference between angular RF 

location, we found that rsc in the ‘similarly tuned’ group (rsc,similar = 0.062) were 

significantly larger than those in the ‘dissimilarly tuned’ group (rsc,dissimilar = 0.012, p 

< 0.001, t-test, Bonferroni corrected). More importantly, both the ‘similar’ and 

‘dissimilar’ groups had a significantly larger proportion of significant, positive rsc 

than predicted by chance (ppositive,similar < 0.001 and ppositive,dissimilar < 0.001, chi-square 

test and Bonferroni corrected for both groups), but only the ‘dissimilar’ group had a 
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significantly larger proportion of significant, negative rsc than predicted by chance 

(pnegative,similar = 0.058 and pnegative,dissimilar < 0.001, chi-square test and Bonferroni 

corrected for both groups) (bar graphs in Figure 2.5F). Furthermore, the ‘similar’ 

group had a larger proportion of significant positive rsc than the ‘dissimilar’ group (p 

< 0.001, chi-square test, Bonferroni corrected). While there was no significant 

difference between the proportion of significant negative correlations in the ‘similar’ 

and ‘dissimilar’ groups (p = 0.487, chi-square test, Bonferroni corrected), overall the 

proportion of significant positive rsc decreased and the proportion of significant 

negative rsc increased in the ‘dissimilar’ relative to the ‘similar’ group. 

We examined the relationship between inter-neuron distance and rsc in tuned 

pairs. In this group the linear decrease in correlation as a function of distance has a 

larger y-intercept than that for the whole population (compare Figure 2.4A and 

Figure 2.6A, p < .01, comparison of Bonferroni corrected 95% confidence intervals). 

When dividing the selective correlations into the ‘similar’ and ‘dissimilar’ RF 

groups, we did not find a significant difference between the slope or y-intercept of 

the fitted lines (Figure 2.6B and C, p > .05, comparison of Bonferroni-corrected 95% 

confidence intervals). However, the line fitted to the ‘dissimilar’ group indicates 

negative values of rsc for the most physically distant pairs, suggesting that the firing 
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of physically distant neurons with dissimilar RF locations is negatively correlated. 

While the medians of the two largest distance bins were negative, they were not 

significantly negative, likely due to the small sample sizes (n = 14 for both 

distances, p = .99, p = .079 for the second largest and largest distances, respectively, 

Wilcoxon signed rank test). 

We also computed the proportion of significantly correlated pairs as a function 

of distance. Tuned neurons showed a decrease in the proportion of significant 

positive rsc as a function of inter-neuron distance (p = 0.001, F-test, see equation in 

Figure 2.6D, top panel). Interestingly, the proportion of significant negative rsc 

increased as the distance between units increased (p < 0.037, F-test, see equation in 

Figure 2.6D, bottom panel), a trend not observed in the sample that includes non-

selective neurons. 
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Figure 2.6: Spike count correlations between visuospatially-tuned neurons as a 
function of distance between neurons. Distributions of rsc (ordinate) as a function of 
distance between neurons (abscissa). A) Displays all neurons, B) neurons with RFs 
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≤ 90° apart, and C) neurons with RFs > 90° apart. D-F) Proportion of significant 
positive and negative rsc and rsc,p (ordinate, see color legend) as a function of distance 
between neurons (abscissa), organized by distance between RF as in A-C. All 
symbols are the same as in Figure 2.4. 

The proportion of significantly correlated pairs was again divided into ‘similar’ 

and ‘dissimilar’ groups based on the distance between the two neurons’ RFs. We 

found that for the ‘similar’ group the proportion of significant positive correlations 

decreased as neurons became farther apart (p = 0.009, F-test see equation in Figure 

2.6E, top panel). However, the proportion of negative correlations showed no 

significant trend (p = 0.580, F-test, see equation in Figure 2.6E, bottom panel). For 

pairs with RFs located more than 90° apart we observed that the proportion of 

significant positive correlations decreased as a function of distance (p = 0.002 F-test, 

see equation in Figure 2.6F, top panel). What may be the most surprising result 

regards the proportion of significant negative correlations, which increases as a 

function of distance (p = 0.009, F-test, see equation in Figure 2.6F, bottom panel). 

To our knowledge, this is the first report in this cortical region of significant 

negative correlations that increase in frequency as a function of inter-neuron 

distance over distances larger than 1mm. 
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2.4.2 Dissociating proximity and tuning similarity 

In order to dissociate the effects of inter-neuron distance and tuning similarity on rsc 

we applied a multiple linear regression procedure using inter-neuron distance (in 

mm), RF location difference (in degrees), and the interaction of inter-neuron 

distance and RF location difference as the predictor variables, and rsc as the 

response variable. We found that inter-neuron distance (ß1 = (1.87±1.22)×10-2) and 

RF location difference (ß2 = (4.97±2.97)×10-4) were both significant predictors of rsc 

but that the interaction of the two variables was not (ß3 = (1.48±16.12)×10-5). The y-

intercept was significantly greater than zero (ß0 = 0.107±0.022) and the overall 

model fit was R2 = 0.097 (p < 0.001). This result indicates that the each variable 

alone is a predictor of rsc, however their multiplicative interaction is not.  

2.5 Discussion  

Our study measured spike count correlations between the firing of macaque area 8a 

neurons using a chronically implanted MEA. We found that in the absence of visual 

stimulation: a) there were significant positive and negative correlations between 

neurons that extend over distances ranging from 0.4 to 4 mm; b) such correlations 

were significantly stronger between visuospatially-selective neurons; c) neurons 

with RFs ≤ 90° apart show a significantly larger proportion of positive correlations 
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than units with RFs > 90° apart, and such correlations decreased in magnitude as a 

function of inter-neuron distance; and d) neurons with RFs > 90° apart showed a 

relatively larger proportion of negative correlations than those with RFs ≤ 90°, and 

such correlations increased in magnitude as a function of inter-neuron distance. 

2.5.1 Previous correlation studies in dlPFC  

Although several studies have examined spike count correlations in different brain 

areas (reviewed in (Averbeck et al., 2006) and (Cohen and Kohn, 2011)), only a few 

studies have measured spike count correlations in dlPFC area 8a of behaving 

monkeys (Constantinidis et al., 2001a; Constantinidis and Goldman-Rakic, 2002; 

Sakurai and Takahashi, 2006; Tsujimoto et al., 2008). So far, we have not found any 

study in this brain area that has recorded from multiple neurons using MEAs 

chronically implanted in the cortex. MEAs have several advantages relative to 

single electrode recordings. First, they allow precise identification of the targeted 

brain area because sub-dural implantation is done while visualizing the anatomical 

landmarks that identify the area (arcuate and principal sulci, (Petrides and Pandya, 

2007)). Second, they allow a precise mapping of the recording sites relative to such 

landmarks that does not change within or between sessions, and thus facilitates the 

anatomical reconstruction of the explored area (Figure 2.1B and C). Third, they 
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provide more stable isolation of single units during a session since the arrays are 

fixed on the cortex rather than attached to the skull, as in single electrode 

recordings (Normann et al., 1999). This guarantees that small movements of the 

brain relative to the skull do not produce movement of the electrodes.   

Unlike previous studies, we explored correlations between neurons located as 

far as 3-4 mm apart. For example, (Constantinidis and Goldman-Rakic, 2002) and 

(Constantinidis et al., 2002) explored inter-neuron distances of up to 1 mm, and 

(Sakurai and Takahashi, 2006) distances up to 0.5 mm. We measured correlations 

between neurons separated by distances from 0.4 to 4 mm. Considering that the 

width of a prefrontal microcolumn is about 0.7-0.9 mm (Kritzer and Goldman-Rakic, 

1995; Hirata and Sawaguchi, 2008), these studies could not isolate functional 

interactions between neurons located in adjacent microcolumns but likely limited 

their findings to neurons located within the same or in nearby microcolumns. Our 

results agree with the results reported by these authors for distances smaller than 1 

mm. Moreover, we found that the proportion of both positive and negative 

correlations were greater than zero for distances up to 3 mm and higher. 

Interestingly, negative correlations only became apparent between tuned neurons 
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at distances greater than 1.5-2 mm; hence, these correlations could not be observed 

in the aforementioned studies. 

A novel finding of our study is the pattern of negative correlations shown in 

Figure 2.5 and Figure 2.6. Proportions of negative correlations significantly higher 

than predicted by chance were mainly found between pairs of neurons with RFs 

located more than 90° apart (Figure 2.5). Remarkably, such a proportion increased 

with the distance between neurons (Figure 2.6). A previous study has reported 

negative correlations between FEF neurons (Cohen et al., 2010) with non-

overlapping RFs but did not quantify the trend that correlations increase as a 

function of interneuron distance. One factor that may have contributed to the 

novelty of our results is that previous studies used a smaller number of trials, thus 

reducing the power of statistical tests. For example Constantinidis and Goldman-

Rakic (Constantinidis and Goldman-Rakic, 2002) used an average of ~10 trials; 

Sakurai and Takahashi (Sakurai and Takahashi, 2006) used a larger number of 

trials (240 to 270), but they did not explore distances beyond 1 mm. We used an 

average of 1010 trials and explored a wider range of distances. The increase in the 

proportion of significant negatively correlated pairs with increasing distance 
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between units cannot be an artifact associated with trial number since this variable 

was similar for all unit pairs across distances. 

Because negative correlations occurred in the absence of visual inputs into the 

neurons RFs when the animals had no information about the upcoming stimulus 

location, they likely reflect direct or indirect interactions between neurons rather 

than a common sensory input to their RFs. These interactions may reflect an 

anatomical and functional organization of area 8a (i.e., units closer together with 

similar coding preferences share excitatory connections, and units far apart with 

dissimilar preferences share inhibitory connections; (Rao et al., 1999)). It may be 

possible that the correlations were due to inputs from other non-sensory brain areas 

reflecting preparation for the task and/or the attentional state of the animal. 

Although this is a possibility, such inputs must be organized according to the 

neurons’ preferences within area 8a (RF similarity) and according to the distance 

between them to produce the pattern of correlations isolated in our data. Thus, we 

consider it more likely that the isolated pattern reflects the intrinsic functional 

connectivity between neurons within the area. 

One previous study used crosscorrelation techniques to explore functional 

interactions between neurons located 0.2 to 0.3 mm apart and reported a trough in 
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the crosscorrelation histogram for pairs of neurons with similar tuning 

(Constantinidis et al., 2002). They interpreted this finding as evidence of inhibitory 

interactions between units that may play a role in functions such as memory 

maintenance. In our study we found that negative correlations between tuned 

neurons located closer together were near chance values (see Figure 2.6). However, 

we did not explore inter-neuron distances as short as 0.2 mm. It is possible that the 

short-range inhibitory interactions reported by these authors are limited to such 

short distances. This issue may require further investigation.    

More importantly, our results indicate that functional interactions between 

dlPFC area 8a neurons extend beyond the previously reported distance of 0.9-1 mm 

(Constantinidis and Goldman-Rakic, 2002). Since the width of a dlPFC micro-

column has been estimated as approximately 0.7-0.9 mm (Levitt et al., 1993; Kritzer 

and Goldman-Rakic, 1995), our results may reflect functional interactions between 

different microcolumns, and agree with reports of dlPFC modules (Bugbee and 

Goldman-Rakic, 1983; Selemon and Goldman-Rakic, 1988; Constantinidis et al., 

2001a; Wang et al., 2004). Moreover, the pattern of positive and negative 

correlations shown in Figure 2.6 suggests that neurons in nearby microcolumns 

mainly interact through excitatory connections while neurons in clusters far away 
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interact through inhibitory connections. These may underlie the competitive 

interactions between neuronal representations that are thought to play an 

important role in target selection and the allocation of attention (Desimone and 

Duncan, 1995; Everling et al., 2002; Szabo et al., 2004; Messinger et al., 2009; 

Lennert and Martinez-Trujillo, 2011). 

2.5.2 Comparison with studies of rsc in other brain areas  

The majority of studies examining spike count correlations in primates have been 

conducted in visual areas ((Gawne et al., 1996; Reich et al., 2001; Kohn and Smith, 

2005; Cohen and Newsome, 2008; Gutnisky and Dragoi, 2008; Smith and Kohn, 

2008); see (Cohen and Kohn, 2011) for a review). Our results share similarities and 

differences with the results reported by these studies. For example, the decrease in 

positive correlations as a function of distance between neurons seems ubiquitous, as 

well as the changes in correlations as a function of neuronal tuning properties. Our 

results also agree with those of a previous study in area V1 that reported 

correlations extending over several millimeters (Smith and Kohn, 2008). However, 

different from our study, they mainly reported positive correlations. This apparent 

discrepancy with our results may be explained by differences in the intrinsic 

connectivity pattern of areas 8a and V1. For example, the granular structure and 
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connections with thalamic nuclei differ between visual and prefrontal cortices 

(Fuster, 2008; Xiao et al., 2009).  

In visual areas, correlated firing between neurons with similar coding 

preferences may hinder stimulus coding (Zohary et al., 1994). A solution to this 

problem may be to decrease the correlated firing during behavioral tasks through 

mechanisms such as attention and learning (Cohen and Maunsell, 2009; Mitchell et 

al., 2009; Gu et al., 2011). However, in the dlPFC, correlation studies have not 

reported such changes in correlation across behavioral states (Constantinidis et al., 

2001a; Constantinidis and Goldman-Rakic, 2002; Sakurai and Takahashi, 2006; 

Tsujimoto et al., 2008). Interestingly, a study in the FEF (located posterior to our 

recording sites) reported a pattern of negative and positive correlations as a 

function of RF distance between units and suggested this pattern reflects 

cooperation and competition between neurons during target selection (Cohen et al., 

2010). Further investigation is needed to clarify whether correlations in the dlPFC 

change as a function of behavioral states. 

Interestingly, it has been proposed that in the visual cortex the structure of 

the correlations rather than their absolute value determines choice probability 

during certain tasks (Nienborg and Cumming, 2010). Our results identify a 
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correlation structure in area 8a that seems to reflect the pattern of direct or indirect 

connectivity between neurons. This basic correlation structure could be modified 

during behavior depending on the input signals and computations performed by 

individual neurons and the entire area network.    

2.5.3 Factors that affect rsc 

Several factors may affect the computation of spike count correlations (Cohen and 

Kohn, 2011). Amongst them are: response strength, time period for counting spikes, 

spike sorting, and fluctuation in behavioral state. Differences in response strength 

between neurons cannot explain the pattern of correlations reported in our study 

since neuronal firing rates did not differ across distances and RF locations. The 

time period used to count the spikes also cannot explain our results, because it was 

identical for all pairs. Spike sorting errors are unlikely the explanation to our 

results. First, we have provided a measure of signal-to-noise ratio in our sample of 

recorded neurons. Second, we excluded neurons recorded from the same electrode 

from the analysis. Finally, one may argue that we may have measured multiunit 

activity and therefore inflated the correlations. Although this cannot be fully ruled 

out, we consider it unlikely because we only included units with waveforms that 

were clearly classified as single neurons by the sorting algorithm. Nevertheless, 
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even if such a factor may have influenced our results, the pattern of positive and 

negative correlations across distances cannot be explained by spike sorting errors. 

Fluctuations in the animals’ behavioral state also cannot explain our findings since 

our task was the same across all recording sessions.  

2.6 Conclusion 

In sum, our results demonstrate a pattern of spike count correlations as a 

function of physical distance between units and distance between their RFs in 

dlPFC area 8a. They suggest that functional interactions between neurons in this 

area extend over multiple millimeter distances, likely reflecting the interactions 

between cortical micro-columns. These may facilitate, under certain behavioral 

conditions, the competition between neurons holding neural representations of 

different objects or locations within the area topographic map.  
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CHAPTER 3  
A QUADRANTIC BIAS IN PREFRONTAL REPRESENTATION 

OF VISUAL-MNEMONIC SPACE 
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The previous study reported a pattern of rsc in dlPFC area 8a indicative of a 

recurrent excitatory, lateral inhibitory network structure. It is thought that this 

network structure is necessary for sustaining neuronal activity in the absence of 

stimulus input, which is a neuronal correlate of working memory. WM-based 

estimations of visual space are known to be biased by meridians of the visual field, 

so we sought to determine whether area 8a WM representations are also subject to 

such biases. We found that single neuron firing rates, the ensemble rsc structure, 

and the simultaneous ensemble activity were all non-linearly biased by the 

meridians of the visual field. We also found that WM selectivity is anatomically 

clustered in a non-retinotopic manner. This chapter is adapted from Leavitt, M., 

Pieper, F., Sachs, A., Martinez-Trujillo, J.C. A quadrantic bias in prefrontal 

representation of visual-mnemonic space (2017), Cerebral Cortex. 
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3.1 Abstract 

Single neurons in primate dorsolateral prefrontal cortex (dLPFC) are known to 

encode working memory (WM) representations of visual space. Psychophysical 

studies have shown that the horizontal and vertical meridians of the visual field can 

bias spatial information maintained in WM. However, most studies and models 

have tacitly assumed that dLPFC neurons represent mnemonic space 

homogenously. The anatomical organization of these representations has also 

eluded clear parametric description. We investigated these issues by recording from 

neuronal ensembles in macaque dLPFC with microelectrode arrays while subjects 

performed an oculomotor delayed-response task. We found that spatial WM 

representations in macaque dLPFC are biased by the vertical and horizontal 

meridians of the visual field, dividing mnemonic space into quadrants. This bias is 

reflected in single neuron firing rates, neuronal ensemble representations, the spike 

count correlation structure, and eye movement patterns. We also found that dLPFC 

representations of mnemonic space cluster anatomically in a non-retinotopic 

manner that partially reflects the organization of visual space. These results 

provide an explanation for known WM biases, and reveal novel principles of WM 

representation in prefrontal neuronal ensembles and across the cortical surface, as 
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well as the need to re-conceptualize models of WM to accommodate the observed 

representational biases. 

3.2 Introduction 

Working memory (WM) is the ability to transiently maintain and manipulate 

information that is no longer available in the environment (Baddeley and Hitch, 

1974). It is strongly correlated with measures of human intelligence, and a critical 

foundation for complex behaviors (Fuster, 1973; Engle et al., 1999; Miller and 

Cohen, 2001). Sustained neuronal activity in the absence of stimulus input is 

considered a neural mechanism for WM (Hebb, 2005). Indeed, single neurons in 

dorsolateral prefrontal cortex (dLPFC) and other regions of the macaque brain 

exhibit spatially-selective sustained activity during WM maintenance (Fuster and 

Alexander, 1971; Niki, 1974a; Batuev, 1986; Gnadt and Andersen, 1988; Funahashi 

et al., 1989; Constantinidis and Procyk, 2004). 

 Psychophysical studies have shown that maintaining visuospatial 

information in WM subjects it to stereotyped distortions, or biases. Saccades to 

remembered target locations show biases in their endpoint distributions that vanish 

when saccade targets remain visible (White et al., 1994). The horizontal and vertical 

meridians of the visual field also appear to exert biases on the contents of spatial 
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WM: remembered locations are repelled away from the meridians, towards the 

center of a quadrant (Huttenlocher et al., 1991; 2004; Merchant et al., 2004; Haun 

et al., 2005). These results suggest inhomogeneities in the representation of 

remembered locations across the visual field. However, little is known about how 

mnemonic representations vary across the visual field. The preponderance of 

previous studies have parameterized visual space as either binary (e.g. left/right) or 

unidimensional (e.g. degrees of angle across the same eccentricity) (Funahashi and 

Kubota, 1994; Goldman-Rakic, 1995). One study provided examples of dLPFC 

neurons with non-Gaussian spatial WM fields, but did not further elaborate on the 

receptive fields’ structures (Rainer et al., 1998). Although these studies have 

substantially advanced our understanding of WM, they have also led to models that 

assume a continuous and/or homogenous representation of the visual-mnemonic 

space (Camperi and Wang, 1998; Compte et al., 2000; Constantinidis and Wang, 

2004; Wimmer et al., 2014). This assumption, however, has not been systematically 

tested.  

Recent behavioral and physiological studies examining WM capacity have 

demonstrated varying degrees of independence between the left and right visual 

hemifields (Vogel and Machizawa, 2004; Delvenne, 2005; Buschman et al., 2011; 
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Delvenne et al., 2011). However, these studies treated visual space as a binary 

variable, thus restricting their ability to make conclusions about visual mnemonic 

space beyond that it is represented separately for each hemifield.  

Spatial attention is also subject to biases by the meridians of the visual field, 

which is relevant given the known overlap in neural substrates between attention 

and WM (LaBar et al., 1999; Awh and Jonides, 2001; Constantinidis et al., 2001b; 

Miller and Cohen, 2001; Lebedev et al., 2004; Awh et al., 2006; Postle, 2006; 

Theeuwes et al., 2009; Ikkai and Curtis, 2011; Gazzaley and Nobre, 2012). 

Psychophysical research has shown that attentional capabilities seem to be 

somewhat independent for different visual hemifields (Alvarez et al., 2012) and/or 

quadrants (Carlson et al., 2007; Liu et al., 2009), and that shifting the focus of 

attention across a meridian incurs a substantial reaction time penalty (Rizzolatti et 

al., 1987). It is possible that WM and attentional representations share similar 

constraints, and therefore WM representations of visual space exhibit hemifield or 

quadrantic biases. 

It has also remained ambiguous whether dLPFC contains a topographically 

organized representation of visual-mnemonic space. There is some evidence that 

dLPFC is organized in a microcolumnar manner, such that groups of cells within 
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the same ~.7mm region share recurrent excitatory connections, while inhibitory 

connections to other microcolumns extend laterally up to 7mm (Kritzer and 

Goldman-Rakic, 1995; Rao et al., 1999). Such an organization could result in 

clustering of spatial mnemonic selectivity, such that during WM maintenance 

neurons within a cluster encoding the same representation share mutual excitation 

while inhibiting neurons in other clusters encoding different representations. This, 

however, has yet to be documented. 

In order to address these questions, we recorded from ensembles of single 

neurons in dLPFC area 8a while subjects performed an oculomotor delayed-

response task. We found that spatial WM representations are biased in a 

quadrantic manner: activity underlying WM for stimuli on the opposite side of a 

meridian from a neuron’s memory field is substantially decreased relative to 

representations of stimuli on the same side of a meridian. This bias is also present 

in the structure of correlated variability (i.e. spike rate or noise correlations) during 

WM maintenance, and evident in the subjects’ behavior, as saccades to remembered 

locations exhibit a tendency to repel away from horizontal and vertical meridians 

and attract towards quadrant centers. We also found that dLPFC neurons encoding 

similar remembered locations tend to cluster anatomically, and that representation 
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of the contralateral hemifield on the cortical surface partially reflects the relative 

distances between points on the retina, though not in a retinotopic manner.  

3.3 Materials and methods 

3.3.1 Ethics Statement 

The animal care and ethics are identical to those in (Leavitt et al., 2013; 2017c) and 

were in agreement with Canadian rules and regulations and were pre-approved by 

the McGill University Animal Care Committee. Animals were pair-housed in 

enclosures according to Canadian Council for Animal Care guidelines. Interactive 

environmental stimuli were provided for enrichment. During experimental days, 

water was restricted to a minimum of 35ml/kg/day, which they could earn through 

successful performance of the task. Water intake was supplemented to reach this 

quantity if it was not achieved during the task and water restriction was lifted 

during non-experimental days. The animals were also provided fresh fruits and 

vegetables daily. Body weight, water intake, as well as mental and physical hygiene 

were monitored daily. Blood cell count, hematocrit, hemoglobin, and kidney function 

were tested quarterly. If animals exhibited discomfort or illness, the experiment 

was stopped and resumed only after successful treatment and recovery. All surgical 
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procedures were performed under general anesthesia. None of the animals were 

sacrificed for the purpose of this experiment. 

3.3.2 Task 

The task was identical to (Leavitt et al., 2017c). Trials were separated into four 

epochs: fixation, stimulus presentation (stimulus), delay, and response (Figure 

3.1A). The animal initiated a trial by maintaining gaze on a central fixation spot 

(0.08 degrees2) and pressing a lever; the subject needed to maintain fixation within 

1.4˚ of the spot until cued to respond. The fixation period lasted either 482, 636, or 

789ms, determined randomly at the beginning of each trial. After fixation, a sine-

wave grating (2.5 Hz/deg, 1° diameter, vertical orientation) appeared at one of 16 

randomly selected locations for 505ms. The potential stimulus locations were 

arranged in a 4x4 grid, spaced 4.7° apart, centered around the fixation point. The 

stimulus period was followed by a randomly variable delay period of 494-1500ms. 

The delay period ended and the response period commenced when the fixation point 

was extinguished, cuing the animal to make a saccade to the location of the 

previously presented stimulus and then to release the lever. The animal had 650ms 

to respond. Successful completion of the trial yielded a juice reward. The minimum 

duration between trials was 300ms. Fixation breaks during the trial or failure to 
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saccade to the target in the allotted time resulted in immediate trial abortion 

without reward and a delay of 3.5 seconds before the next trial could be initiated. 

Figure 3.1: Task, method, and single-cell data. (A) Overview of oculomotor delayed-
response task, described in detail in the methods. The dashed circles indicating 
potential cue locations are shown for illustrative purposes and are not present in 
the task. (B) Array implantation sites and anatomical landmarks in both subjects. 
(C) Example delay-selective neurons. (D) Distributions of neurons’ preferred 
locations during the delay epoch. 
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3.3.3 Experimental Setup 

The experimental setup is identical to (Leavitt et al., 2013; Tremblay et al., 2014; 

Leavitt et al., 2017c). The stimuli were back-projected onto a screen located 1 meter 

from the subjects’ eyes using a DLP video projector (NEC WT610, 1024x768 pixel 

resolution, 85 Hz refresh rate). Subjects performed the experiment in an isolated 

room with no illumination other than the projector, which still provides some 

illumination even when projecting black. Eye positions were monitored using an 

infrared optical eye-tracker (EyeLink 1000, SR Research, Ontario, Canada) and 

endpoint centroids were adjusted to match the target location for each session. A 

custom computer program controlled stimulus presentation and reward 

dispensation, and recorded eye position signals and behavioral responses. Subjects 

performed the experiment while seated in a standard primate chair, and were 

delivered reward via a tube attached to the chair and an electronic reward 

dispenser (Crist Instruments, TX, USA) that interfaced with the computer. Prior to 

the experiments, subjects were implanted with head posts. The head post(s) 

interfaced with a head holder to fix the monkeys’ heads to the chair during 

experiment sessions. 
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3.3.4 Microelectrode Array (MEA) Implant 

As in (Leavitt et al., 2013; Tremblay et al., 2014; Leavitt et al., 2017c), we 

chronically implanted a 10x10, 1.5mm MEA (Blackrock Microsystems LLC, Utah, 

USA; (Maynard et al., 1997; Normann et al., 1999) in each monkey’s left dLPFC—

anterior to the knee of the arcuate sulcus and caudal to the posterior end of the 

principal sulcus (area 8a) (Figure 3.1B). Detailed surgical procedures can be found 

in (Leavitt et al., 2013).  

3.3.5 Recordings and Spike Detection 

Data were recorded using a ‘Cerebus Neuronal Signal Processor’ (Blackrock 

Microsystems LLC, Utah, USA) via a Cereport adapter. Spike waveforms were 

detected online by thresholding. The extracted spikes (48 samples at 30 kHz) were 

re-sorted manually in ‘OfflineSorter’ (Plexon Inc, TX). The electrodes on each MEA 

were separated by at least 0.4 mm and were organized into three blocks of 32 

electrodes (A, B, C). We collected data from one block during each recording session. 

Detailed recording procedures can be found in (Leavitt et al., 2013). 

3.3.6 Analysis Epochs 

We analyzed the final 483ms of the fixation epoch and the entirety of the stimulus 

epoch; we analyzed the entire delay epoch after the first 150ms in order to minimize 
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the potential impact of signal latency and stimulus aftereffects (Mendoza-Halliday 

et al., 2014). We only analyzed successfully completed trials. Data analysis was 

performed using MATLAB and SPSS. 

3.3.7 Single Unit Yield and Epoch Selectivity 

We collected spike data from a total of 201 single neurons (99 in JL, 102 in F) from 

70 unique recording sites (24 in JL, 46 in F) across 15 recording sessions (7 in JL, 8 

in F), To determine whether a neuron was spatially tuned for the stimulus location 

during the stimulus or delay epochs, we computed a Kruskal-Wallis one-way 

analysis of variance on the average firing rates with location as the factor. Tuned 

neurons showed at least one location with a significantly different firing rate (p < 

.05). We found 143 of 201 (71%) neurons exhibited stimulus-selectivity and 157 

(78%) exhibited delay-selectivity (Figure 3.1C&D, Supplementary Figure 3.1), 

yielding 902 correlation pairs between delay-selective units. A neuron’s preferred 

location was defined as the location that elicited the largest response during the 

epoch of interest. 

3.3.8 Spatial Autocorrelation Analysis 

To determine whether delay epoch selectivity is anatomically clustered, we first 

determined the preferred memory location of the parcel of cortex around each 
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electrode on the microelectrode array, which we defined as the remembered location 

that generated the greatest response of all thresholded activity on that electrode, 

across all recording sessions. This yielded a single preferred location for each 

electrode on the array. Next, we computed Moran’s I (Moran, 1950; Zuur et al., 

2007; Bullock et al., 2017) across the entire array. Moran’s I is a measure of spatial 

autocorrelation–the degree of clustering or similarity among objects in space–

defined as: 

  (4) 

where  is the number spatial units indexed by  and ;  is the variable of interest; 

 is the mean ; and  is an element of a matrix of spatial weights. Values of I 

range from -1 to 1. Positive values of Moran’s I indicate that similar feature values 

are spatially clustered, while negative values of Moran’s I indicate that similar 

feature values are spatially repellant or dispersed. Moran’s I was computed 

iteratively, extending the radius of included locations (the spatial radius) each time, 

until the whole array was included. This allowed us to determine how preferred 

location similarity clusters across different spatial scales. For example, computing 

Moran’s I for the smallest cluster radius (400 mm) only included adjacent units, 
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while computing it for the largest cluster radius included all units on the array. 

This was performed separately for the horizontal and vertical components of the 

preferred location, and the results were averaged. Significance was assessed using 

permutation tests. 

3.3.9 Single Unit Firing Rate Meridian Effects 

In order to test whether single neurons’ firing rates were significantly biased by 

meridians, we first computed the mean response of each selective neuron to each 

stimulus location for the epoch of interest. Next, we z-scored each neuron’s 16 mean 

responses to yield standardized firing rates that could be compared across neurons. 

Finally, we calculated whether a neuron’s firing rates were significantly lower for 

locations that lie across a meridian from that neuron’s preferred location, relative to 

equidistant neurons that fall within the same quadrant as the preferred location. 

The comparison intervals between group medians in boxplots (e.g. Figure 3.3) are 

defined as the median ± 1.57(q3-q1)/√n, where q3 is the 75th percentile, q1 is the 25th 

percentile. 

In order to control for the difference in the proportion of intraquadrant vs. 

extraquadrant locations relative to the preferred locations (Figure 3.3A&C; there 

are two extraquadrant diagonal locations vs. only one intraquadrant diagonal 
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location), we randomly subsampled half of the diagonal extraquadrant locations 

such that the number of diagonal intraquadrant and extraquadrant locations were 

matched. This procedure was repeated 5000 times to obtain a bootstrapped 

distribution of the median extraquadrant response. This distribution of median 

values was then compared to the median intraquadrant response. 

3.3.10 Stepwise Regression 

The distance between stimulus locations covaries with other factors, such as 

eccentricity and angle. In order to test whether the observed quadrantic biases in 

single neuron firing rates could be ascribed to these covarying factors, we performed 

a stepwise linear regression (Pentry = 0.05, Premoval = 0.1) to determine which factors 

significantly affect single neuron firing rates. The regression equation is of the form: 

 

 

(5) 

y is the delay epoch firing rate, β0 is the constant (intercept term), D is the 

Euclidean distance between the remembered location and preferred location, θ is 

the angle between the remembered location and the preferred location, E is the 

difference in eccentricity between the remembered location and the preferred 
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location, H is whether the remembered location is across a horizontal meridian from 

the preferred location, and V is whether the remembered location is across a 

vertical meridian from the preferred location. The full model is thus composed of a 

constant, each of the primary factors listed above, and all the first-order interaction 

terms. In order to control for collinearity, we determined whether the variance 

inflation factor (VIF) of any coefficients in the final model were greater than 10. If 

so, we removed the coefficient with largest VIF and repeated the stepwise 

regression. This procedure was repeated until all coefficients in the final model had 

a VIF less than 10. The coefficients removed due to collinearity were βDθ, βθH, βDH, 

βθV, βDE, and βDV. 

3.3.11 Quadrantic Bias Visualization 

In order to visualize the quadrantic bias and obtain a continuous estimate of each 

neuron’s response to the entire region of the visual field covered by the stimulus 

array, we fit a surface to each neuron’s delay-epoch activity for the 16 stimulus 

locations (Figure 3.4). Specifically, we computed the mean firing rate for each of the 

16 locations, then fit a 2-dimensional, 2nd order polynomial of the form 

  (6) 
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to the x- and y-coordinates of each stimulus location. This yielded a function we 

refer to as the “response surface”. Other than the location of the function’s peak, the 

firing rate variability represented across the response surfaces was only used for 

visualization purposes and not for quantitative analysis. 

3.3.12 Correlation (rsc) Analysis 

In order to compute rsc, we first calculated the z-scores of each unit’s spike counts 

for each condition (i.e. stimulus location). This removes the spike rate variability 

across conditions due simply to variability in firing rate responses to different 

stimuli (i.e. stimulus selectivity) and differences in baseline firing rates for different 

neurons. We then grouped units into simultaneously recorded pairs (n=1319) and 

computed Pearson’s correlation coefficients (rsc,raw) between the z-scored spike counts 

during each task epoch (Cohen and Kohn, 2011; Leavitt et al., 2013; 2017c). In 

addition, we minimized the risk of falsely inflating the correlation values by 

excluding correlations between units on the same electrode from analysis. Fisher’s 

r-to-z transformation was applied to the correlation coefficients in order to stabilize 

the variance for hypothesis testing. We also calculated correlations after shuffling 

the spike rates for all trials (Averbeck and Lee, 2006; Cohen and Kohn, 2011; 

Tremblay et al., 2014; Leavitt et al., 2017c). The shuffling procedure consisted of 
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randomizing the trial order within each location condition for each neuron, then 

computing the spike count correlation (rsc,shuff). This procedure destroys the 

simultaneity in the recordings, thereby providing a measure of the magnitude of 

correlations expected by chance. The shuffling was repeated 1000 times. The mean 

of the 1000 shuffles was subtracted from the corresponding rsc,raw to yield a corrected 

value, henceforth referred to as rsc. 

3.3.13 Population Decoding 

We used a support vector machine (SVM; Libsvm 3.14; (Chang and Lin, 2011)), a 

linear classifier, to extract task-related activity from the population-level 

representations of simultaneously-recorded neural ensembles (Cortes and Vapnik, 

1995; Chang and Lin, 2011; Moreno-Bote et al., 2014; Tremblay et al., 2014; Leavitt 

et al., 2017c). The SVM was given firing rate data from an ensemble in order to 

predict at which of the 16 locations the stimulus was presented for a given trial, 

during each of the fixation, stimulus, and delay epochs. The classification was 

performed separately for each session, using the epoch-averaged firing rates (see 

Analysis Epochs) of each simultaneously recorded neuron. We normalized each 

unit’s firing rates across all trials by subtracting its midrange rate value and 

dividing by its range (max-min), in order to prevent units with larger absolute 
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changes in firing rate from dominating the classification boundaries. These two 

parameters were determined from the training set and applied to both the training 

and testing sets. We assessed the classifier’s performance using cross-validation: a 

technique in which some proportion of the trials are used to train the decoder, and 

the decoder attempts to classify the remaining trials. We trained the decoder on 

80% of the trials and tested on the remaining 20%. This procedure was repeated 

such that every trial would be represented once in the testing set. In order to 

determine whether ensemble representations are biased by meridian effects, we 

then computed the probability of the decoder mistakenly decoding the remembered 

location as falling within the same quadrant as the true location and compared it to 

the probability that the decoder mistakenly decodes the remembered location as 

being at an equidistant but extraquadrant location from the true location. 

3.3.14 Saccade Endpoint Distribution Variability 

The variability of saccade endpoint distributions for each target location was 

computed using an elliptic bivariate normal distribution as in (Merchant et al., 

2004) (Figure 3.7). The ellipse was centered at the x-y mean of the saccade 

endpoints for a given target location. We obtained the two axes of the ellipse via 

eigendecomposition of the covariance matrix of the x-y eye positions (i.e. a matrix in 
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which rows = trials, column 1 = x-position, and column 2 = y-position). The resultant 

orthogonal eigenvectors are the major and minor axes of the ellipse, and are scaled 

by the square root of their eigenvalues (the variance) and thus lie along the axes of 

greatest variability of the data. We scaled the axes by the upper 95th percentile of 

the χ2 distribution in order to create an ellipse that contains the central 95% of the 

saccade endpoint distribution. The orientation of the ellipse is the arctangent of the 

x and y components of the eigenvector from the major axis (i.e. the larger 

eigenvector). 

3.4 Results 

Two adult Macaca fascicularis performed an oculomotor delayed-response task 

(Figure 3.1A) while we recorded from neural ensembles in dLPFC area 8a using 

chronically-implanted 96-channel microelectrode arrays (Figure 3.1B). The neural 

correlates of WM for spatial locations have been extensively documented in this 

brain region (Funahashi, 2006; Riley and Constantinidis, 2015). The target 

stimulus could appear at any one of 16 possible locations, arranged in a uniformly 

spaced 4×4 grid around a central fixation point. We collected spike data from a total 

of 201 single neurons across 15 recording sessions, out of which 157 (78%) exhibited 

delay-epoch spatial selectivity (P < .05, Kruskal-Wallis; firing rate×location; Figure 
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3.1C, Supplementary Figure 3.1). A neuron’s preferred location was defined as the 

location that elicited the largest response averaged over the delay epoch (Figure 

3.1D). Both subjects made incorrect choices about the stimulus location in <1% of 

completed trials. 

3.4.1 Anatomical Topography of Mnemonic Representations in dLPFC 

One outstanding question in studies of spatial WM is whether the dLPFC contains 

a topographically organized representation of mnemonic space and whether such a 

representation follows a retinotopic scheme. In order to answer this question, we 

first determined the memory location that elicited the largest delay-epoch activity 

in the cortex surrounding each electrode (a “cortical parcel”–see Methods), and 

defined this as the preferred location for that electrode (Figure 3.2A). We then 

computed Moran’s I, a measure of spatial autocorrelation (see Methods), across the 

range of all distances between electrodes on the array, allowing us to determine how 

similarity in preferred location clusters across different spatial scales for each 

subject (Figure 3.2B). Positive values of Moran’s I indicate that similar feature 

values are spatially clustered; a given location in space is more likely to be in a local 

neighborhood with other similar values. Negative values of Moran’s I indicate that 
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similar feature values are spatially repellant or dispersed; a given location is more 

likely to be in a neighborhood with dissimilar values. 

Figure 3.2: Delay Selectivity is Anatomically Clustered in dLPFC. (A) Preferred 
memory location of the cortical parcel around each electrode of the microelectrode 
arrays for subjects JL (left) and FR (right). Preferred memory location was defined 
as the lococation eliciting the maximum response of all thresholded activity on an 
electrode. (B) Moran’s I (y-axis) across spatial scales (x-axis) for each subject. 
Moran’s I is a measure of spatial autocorrelation (i.e. clustering) that ranges 
between -1 and 1. Positive values of Moran’s I indicate that similar preferred 
locations are spatially clustered. Negative values indicate that similar preferred 
locations are spatially repellant. Moran’s I is computed across the range of all 
distances between electrodes on the array. The ‘cluster radius’ is maximum distance 
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between units included in the computation. For example, computing Moran’s I for 
the smallest cluster radius (400 mm) only includes adjacent electrodes. Shaded 
region indicates central 95% of null distribution generated by permutation test, 
thus any point outside the shaded region is considered significant. Preferred 
locations are significantly spatially autocorrelated at distances ≤ 1.5mm in both 
subjects. (C) Correlation between anatomical distance between cortical parcels, and 
Euclidean distance between parcels’ preferred locations (i.e. Mantel test), computed 
separately for each visual hemifield and subject. The black point represents the 
observed value, while the shaded region indicates the central 95% of the null 
distribution generated by a permutation test. Thus, the correlation is significant for 
both subjects in the right (i.e. contralateral) hemifield but not the left hemifield.  

Our analysis showed that preferred locations are significantly spatially 

autocorrelated at distances ≤ 1.5mm in both subjects (P < .001 in both subjects, 

permutation test; Figure 3.2B); a given cortical parcel is more likely to be 

surrounded by other parcels that have similar delay epoch selectivity than by 

parcels that have dissimilar delay epoch activity. We also found a correlation 

between anatomical distance between parcels and the Euclidean distance between 

the preferred memory locations of those parcels, but only for parcels that have 

preferred memory locations in the contralateral (right) hemifield to the recording 

sites (r = .28, P < .001, subject JL; r = .13, P < .001, subject FR; Mantel Test; Figure 

3.2C). The correlation was not significant for parcels with selectivity in the 

ipsilateral/left hemifield (r = -.11, P = .17, subject JL; r = -.02, P = .33, subject FR; 

Mantel Test). These results indicate that the relative spatial relationships in the 
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retina are partially preserved in the cortical surface. However, retinal coordinates 

do not strictly map onto cortex (e.g. we found no single foveal region), nor is the 

effect uniform. Indeed, simple inspection of the data in Figure 3.2A shows that 

clusters of electrodes with different spatial selectivities (e.g. neurons selective for 

different hemifields, or for opposite locations in the same hemifield) can sometimes 

be close, or even adjacent to one another. Thus memory fields in dLPFC exhibit 

topography, but in a different form than the retinotopic organization of visual areas 

such as V1 and the FEF. 

3.4.2 Spatial Bias in Single-Neuron Firing Rates 

To determine whether dLPFC neurons represent visual space homogenously, we 

first examined how delay activity changed when remembering locations within 

versus between quadrants of the visual field. For each neuron with a preferred 

location adjacent to both a horizontal and vertical meridian (Figure 3.3A & B, grey 

circles, see Methods), we examined delay activity in trials in which stimuli were 

remembered at locations equidistant from the preferred location. These locations 

could fall within the same quadrant as a neuron’s preferred location (intraquadrant; 

Figure 3.3A, green circles), or across a meridian (extraquadrant; Figure 3.3A, red 

circles). We found that delay epoch activity was significantly lower for remembered 
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extraquadrant stimuli as compared to equidistant intraquadrant remembered 

stimuli for neurons that preferred one of the central four stimulus locations  

(P < 10-10, bootstrap test—see methods, Figure 3.3A). We then examined each 

pairing of intra- and extraquadrant locations. The quadrantic bias was significant 

for both the vertical and horizontal meridians, and was not due to differences in 

eccentricity between remembered locations, or dominated by a single meridian 

(Figure 3.3B). Quadrantic biases for neurons with more eccentric preferred 

locations showed a similar trend, though not significantly for the horizontal 

meridian (Supplementary Figure 3.2). In order to control for the possibility that the 

same neurons were recorded from repeatedly across multiple sessions, the same 

analyses were repeated including only one session per block of recording electrodes 

(See Methods), yielding a similar trend (Supplementary Figure 3.3). 
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Figure 3.3: Quadrantic Bias in Single Neuron Firing Rates. (A) Quadrantic bias in 
single neuron firing rates (y-axis) pooled across preferred (grey), intraquadrant 
(green), and extraquadrant (red) locations during the delay epoch. Firing rates are 
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z-scored across all 16 locations. n = 41 neurons. *P < 10-10, bootstrap test–see 
methods. Notches indicate 95% comparison intervals of the median (see Methods). 
Edges of boxes extend one quartile from median. Whiskers extend to ~99.3% 
distribution coverage. Red crosses indicate outlying values. Only the delay epoch 
and neurons with preferred locations in the central four locations are analyzed in 
this figure. (B) Similar to (A), but each location lying adjacent to a neuron’s 
preferred location is presented individually. The spatial relationships to the 
preferred location and significance of pairwise comparisons are depicted in the 
legends below the figure. Note that the spatial relationships depicted in the legends 
are relative; the legends use one of the four analyzed preferred locations as an 
example and neurons with preferred locations at each of the four central locations 
are analyzed. (C) Identical to (A), but during the stimulus epoch. n = 50 neurons. 
(D) Identical to (B), but during the stimulus epoch. Note that there are fewer 
significant differences between responses to intradquadrant vs extraquadrant 
locations. 

In order to determine whether the bias is exclusively present during the delay 

period or also exists during visual stimulus input, we applied the same analysis to 

the firing rates during the stimulus epoch. We found that the quadrantic bias 

during the stimulus epoch was present, though weaker than during the delay epoch; 

there were fewer significant differences in firing rate between intra- vs 

extraquadrant stimulus locations during stimulus presentation (Figure 3.3C & D; 

Supplementary Figure 3.4). This difference was most pronounced for the central 

four preferred locations: 12 of the potential 15 pairs of locations were significantly 

different during the delay epoch, as compared to 8 out of 15 during the stimulus 
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epoch (P < 0.05, paired Wilcoxon signed-rank test, Hochberg-corrected; Figure 3.3B 

& D). 

Examining the stimulus array, one can see that a number of additional factors, 

such as eccentricity and angle, may covary with the Euclidean distance between 

stimuli. Thus, it is possible that these factors are responsible for the observed 

quadrantic biases in single neuron firing rates during the delay epoch. We assessed 

this possibility by performing a stepwise linear regression to determine which 

factors significantly affect single neuron firing rates. Our model attempted to 

predict the delay epoch firing rates using the following factors: Euclidean distance 

of remembered location from preferred location; angular distance from preferred 

location; eccentricity difference from preferred location; crossing of the vertical 

meridian; crossing of the horizontal meridian; and all the first order interaction 

terms; collinear terms were also removed (see Methods). The horizontal meridian 

crossing and vertical meridian crossing terms (as well as the rest of the primary 

factors and multiple interaction terms – see Supplementary Table 3.1 for the full 

results of the analysis), were significant in the final model (P < 0.001 for all primary 

factors), indicating that crossing a meridian significantly influences firing rates, 
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and that the observed quadrantic biases cannot be ascribed to alternative covarying 

factors. 

To better convey the quadrantic bias in firing rates, we visualized how the 

mnemonic activity of single neurons varies across all 16 remembered locations. We 

did this by fitting a 2-dimensional, 2nd order polynomial to the firing rates for each 

of the 16 locations (see Methods; Figure 3.4A). The resulting surface approximates 

the location of maximum activity (the “response peak”) for neurons that respond 

with similar intensity to multiple adjacent locations, and also provides a continuous 

estimation of the neuron’s response to the portion of the visual field covered by the 

stimulus array. The neuron in Figure 3.4A has a preferred location in the lower 

right quadrant. The epicenter of the preferred field is within the quadrant, far from 

the horizontal meridian. We superimposed the response surfaces of multiple 

example neurons in Figure 3.4B. The quadrantic bias in firing rates is clearly 

visible in the restriction of neural activity to within-quadrant areas and relative 

lack of activity that extends across the meridians. 
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Figure 3.4: Visualizing the Quadrantic Bias. (A) “Response surfaces” were computed 
by fitting a 2-dimensional, 2nd order polynomial to the mean firing rate for each of 
the 16 locations (see Methods). The resulting surface provides a continuous 
estimation of the neuron’s response to the portion of the visual field covered by the 
stimulus array. (B) By superimposing the response surfaces of five single neurons, 
the quandrantic bias in firing rates becomes clearly visible. Notice the restriction of 
neural activity to within-quadrant areas and relative lack of activity that extends 
beyond quadrants. X’s indicate the peaks of each of the five neurons included in this 
panel. 

3.4.3 Correlated Variability During WM Maintenance 

Although the previous results reveal that WM representations of visual space are 

non-linearly biased by meridians, they do not inform us about the mechanisms 

underlying this bias. It is thought that the sustained activity encoding visuo-spatial 

WM is maintained by a neural circuit structure characterized by recurrent 

excitatory connections between similarly-tuned neurons and lateral inhibitory 

connections between dissimilarly-tuned neurons (Zipser et al., 1993; Batuev, 1994; 

Goldman-Rakic, 1995; Camperi and Wang, 1998; Compte et al., 2000; Durstewitz et 

al., 2000; Constantinidis and Wang, 2004; Compte, 2006). One prediction of this 
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connection scheme is that correlated variability in firing rate should be greater 

between similarly-tuned neurons than dissimilarly-tuned neurons. Accordingly, the 

correlated variability between pairs of neurons encoding visuo-spatial WM 

representations in the same quadrant (intraquadrant pairs) should be greater than 

between neurons encoding representations in different quadrants (extraquadrant 

pairs). 

We found that the relationship between tuning similarity and spike count 

correlation (rsc–a measure of correlated variability–see Methods) varies depending 

on the task epoch. During fixation, the magnitude of rsc roughly followed the neuron 

pairs’ tuning similarity (Figure 3.5A). Median rsc was significantly greater than zero 

for intraquadrant pairs (Figure 3.5A, red; P < 0.05, sign test, Hochberg-corrected), 

and for pairs with response peaks in the same left-right hemifield but different top-

bottom hemifield (Figure 3.5A, purple; P < 0.05, sign test, Hochberg-corrected). 

Median rsc between intraquadrant neurons was also significantly higher than 

between neurons with response peaks across both meridians (i.e. the diagonally 

opposite quadrant; Figure 3.5A; P < 0.05, Wilcoxon rank-sum test, Hochberg-

corrected). During the stimulus epoch, median rsc was not significantly different 

from zero for most tuning similarity groups (Figure 3.5C; P > 0.05, sign test, 
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Hochberg-corrected), and no groups were significantly different from each other 

(Figure 3.5C; P > 0.05, Wilcoxon rank-sum test; Hochberg-corrected). We found that 

median rsc during the delay epoch between intraquadrant neuron pairs was 

significantly greater than median rsc between neurons with response peaks on the 

same side of the vertical meridian but opposite sides of the horizontal meridian 

(Figure 3.5E; P = 0.012, Wilcoxon rank-sum test, Hochberg-corrected). This 

difference was absent for neurons with response peaks on opposite sides of the 

vertical meridian. 

It is noteworthy that the predicted relationship between rsc and the distance 

between response peaks was only visible within a left/right hemifield but not 

between left/right hemifields, which may reflect the independence of WM resources 

for the left and right hemifields (Buschman et al., 2011). Furthermore, these effects 

are not ascribable to differential responses to stimulus inputs, nor to differences in 

baseline firing rate of constituent neurons in a correlation pair, because rsc are 

computed in a manner that control for these factors (see Methods). Thus, we 

consider these effects to result from the underlying network architecture and not 

from firing rate or stimulus-driven effects.  
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Figure 3.5: Correlated Variability across Task Epochs. (A) Median rsc (y-axis) 
between delay-selective neurons during the fixation epoch, grouped based on tuning 
similarity (x-axis). Tuning similarity is determined based on the relative spatial 
relationship between the quadrants that contain the constituent neurons’ response 
peaks. The legend at the top of the figure depicts each spatial relationship category, 
showing response peak locations for example correlation pairs in that category. The 
shaded region is the 95% confidence intervals of the median. *median different from 
0, P < 0.05, Sign test, Hochberg-corrected. #P < 0.05, Wilcoxon rank-sum test, 
Hochberg-corrected. (B) rsc distributions for each tuning similarity group in (A). 
Grey lines denote 25th, 50th (i.e median), and 75th percentiles. Values of rsc > 0.3 or < 
-0.3, which constitute less than 5% of the distributions, are omitted from the plot. 
(C) Same as (A), but for the stimulus epoch. (D) Same as (B), but for the stimulus 



Chapter 3. A Quadrantic Bias in PFC WM Representation 

 107 

epoch. (E) Same as (A), but for the delay epoch. (F) Same as (B), but for the delay 
epoch. 

3.4.4 Quadrantic Bias in Single-Trial Ensemble Representations 

Given that single neuron firing rates for different remembered locations within 

quadrants were more similar to each other than locations between quadrants, it 

follows that dLPFC ensemble representations of within-quadrant locations should 

be more similar than across-quadrant representations. To test this hypothesis, we 

decoded the remembered stimulus location from ensembles of simultaneously 

recorded neurons on a single-trial basis using a machine-learning algorithm 

(support vector machine, or SVM, see Methods (Cortes and Vapnik, 1995)) as in 

(Leavitt et al., 2017c). This method is well-suited to decoding the high-dimensional 

representations of large groups of neurons (Rigotti et al., 2013; Moreno-Bote et al., 

2014).  

If population representations of visual mnemonic space have lower resolution 

within a quadrant than across quadrants, the decoder should commit intraquadrant 

classification errors with greater probability than extraquadrant classification 

errors. Indeed, this is exactly what our data show (P < 0.001, χ2 test, Hochberg-

corrected; Figure 3.6A). The probability of committing an erroneous intraquadrant 
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classification is approximately twice that of committing an erroneous extraquadrant 

classification. We found a similar quadrantic bias in the ensemble representation 

during the stimulus epoch (Figure 3.6B), however the effect was significantly 

stronger during the delay epoch. The odds ratio of intraquadrant : extraquadrant 

decoding errors was significantly greater during the delay epoch compared to the 

stimulus epoch (Figure 3.6C; P < 0.01, z-test). As with the single neuron firing rate 

data, we also analyzed each meridian and stimulus eccentricity configuration 

separately, and found that the effect was present in all combinations during 

memory and some combinations during stimulus presentation (Supplementary 

Figure 3.5). These results indicate that ensemble-level representations of a given 

location are more similar to the representations of other intraquadrant locations 

than equidistant extraquadrant locations, and that this bias is stronger during 

memory maintenance than during sensory input. 
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Figure 3.6: Quadrantic Bias in Ensemble Representation. (A) Mnemonic 
representations were decoded from ensembles of simultaneously-recorded neurons 
during the delay epoch. The probability of correctly decoding the remembered 
location during the delay epoch (grey), erroneously decoding it as an intraquadrant 
location (green), and erroneously decoding it as an extraquadrant location (red), 
pooled across all locations that lie adjacent to a meridian. Note that this analysis 
controls for the different proportion of intraquadrant vs. the extraquadrant 
locations. Shaded regions indicate 95% confidence intervals of the proportion. * P < 
0.001,  test, Hochberg-corrected. (B) Same as (A), but for the stimulus epoch. (C) 
The odds ratio of intraquadrant : extraquadrant decoding errors is plotted for the 
delay (red) and stimulus (blue) epochs. Shaded regions indicate 99% confidence 
intervals. *P < 0.01, z-test, Hochberg-corrected. 
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3.4.5 Quadrantic Biases in Behavior 

Given that we observed significant effects of intraquadrant vs. extraquadrant visuo-

spatial mnemonic representations on firing rates, ensemble coding, and spike-rate 

correlations, we wanted to know whether these effects also manifest in the animals’ 

behavior. We hypothesized that because intraquadrant representations have lower 

resolution than extraquadrant representations, this should systematically bias 

memory-guided saccade endpoints toward quadrants and away from meridians, an 

effect previously reported in human and monkey psychophysical studies 

(Huttenlocher et al., 1991; 2004; Merchant et al., 2004; Haun et al., 2005). We 

tested this hypothesis by using the four target locations as outer boundaries to 

delineate a square region within a quadrant, and calculated the proportion of 

saccades that fell within that square region (Figure 3.7A). If saccades are not 

systematically drawn toward quadrant centers, only 25% of saccade endpoints 

should fall in this square region, whereas if saccades are biased toward quadrant 

centers, more than 25% of saccades should fall within this region.  
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Figure 3.7: Saccades Attract to Quadrant Centers. (A) Distributions of saccade 
endpoints for both subjects. The black dots denote the target locations, and the 
vertical and horizontal black lines represent the vertical and horizontal meridians, 
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respectively. We calculated the elliptic bivariate normal distribution of the saccadic 
endpoints for each target (see Methods). The ellipse is centered at the x-y mean of 
the endpoints, and the length of the major and minor axes scaled to 95% of the 
distribution. A dotted line connects the target location to the center of the saccade 
endpoint distribution in order to visualize the difference between the two points. If 
significantly more than 25% of saccade endpoints fall within the grey box, we 
consider the quadrant center to act as an attractor for saccades (see Results). (B) 
Proportion of both subjects’ saccades falling inside the grey box (y-axis) for each 
quadrant (x-axis). Shaded regions indicate 95% confidence intervals of the 
proportion. * P < 0.01, z-test.  n = 1442, 1457, 1431, and 1412, for quadrants 1, 2, 3, 
and 4, respectively. (C & D) Same as (A & B), but for subject JL. n = 756, 763, 757, 
and 755, for quadrants 1, 2, 3, and 4, respectively. (E & F) Same as (A & B), but for 
subject F. n = 686, 694, 674, and 657, for quadrants 1, 2, 3, and 4, respectively. 

We found that saccades were systematically attracted toward quadrant centers 

in all four quadrants when the data from both subjects were pooled (Figure 3.7B; P 

< 0.05, z-test, Hochberg-corrected). However, the strength of the bias was 

heterogeneous across individual subjects. One subject robustly exhibited a 

quadrantic saccade bias in all four quadrants (Figure 3.7D), but the other exhibited 

the bias in only two of four quadrants (Figure 3.7F). Thus the quadrantic biases 

that we observed in measurements of neural activity are also reflected in the 

animals’ behavior similarly to previous findings in human and non-human 

primates, though we observed substantial variability across individuals. 

Prior studies have found that biases in memory-based estimates of spatial 

location are more pronounced for longer memory delays (White et al., 1994; 
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Merchant et al., 2004). In order to determine whether this effect was present in our 

data, we split the trials into two groups based on the duration of the memory delay: 

short trials, in which the memory delay was ≤ 1000ms, and long trials, in which the 

memory delay was > 1000ms. We compared the strength of the quadrantic bias in 

saccades in the short vs. long memory delay trials, and did not find a significant 

difference between the two groups in any of the four quadrants (Supplementary 

Figure 3.6; P > 0.05, χ2 test, Hochberg-corrected). 

It is possible that even if we could not detect an effect of memory delay 

duration on the quadrantic bias at the behavioral level, it could still be present at 

the neuronal level. However, a comparison the early delay epoch—defined as 151-

450ms after the beginning of delay epoch—and the late delay epoch—defined as the 

final 200ms of the delay epoch—did not reveal any major differences in the strength 

of the quadrantic bias in the single neuron firing rates (Supplementary Figure 3.7 

and Supplementary Figure 3.8). The number of significant differences between 

responses to intraquadrant and extraquadrant locations and the pattern of 

significant differences were similar during the early and late delay epoch. It is 

possible that we failed to find a significant effect of delay epoch duration on the 
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strength of the quadrantic bias because our maximum delay duration was 1500ms, 

while prior studies used delay durations of up to 5600ms. 

3.5 Discussion 

We systematically varied the position of a remembered location across multiple 

dimensions of visual space in an oculomotor delayed-response task while 

simultaneously recording from ensembles of single neurons in dLPFC area 8a. We 

found a quadrant-centric bias of visual mnemonic space representations, evident in 

single neuron firing rates, pairwise correlated variability, ensemble encoding of 

remembered location, and a bias in saccade endpoint towards quadrant centers.  We 

also found that mnemonic activity is anatomically organized and clustered across 

dLPFC in a manner that partially reflects the geometric properties of visual space, 

but is not retinotopic.  

3.5.1 Clustering of Mnemonic Representations in dLPFC 

While there are abundant examples of topographic organization in brain regions 

more directly involved in sensory and motor processing, evidence for topography in 

dLPFC has historically been limited. This is likely because the basic sensory 

quantities under investigation in mapping studies do not have a straightforward 

relationship with the structure and function of dLPFC, a region known to be 
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involved in comparatively abstract components of sophisticated behavior (Miller 

and Cohen, 2001). One study found that receptive fields for visual stimuli tend to 

become larger and more eccentric as one moves dorsally, away from the ventral 

portion of the arcuate sulcus (Suzuki and Azuma, 1983). Given the heterogeneity of 

individual samples and subjects in the trend they observed, the distribution of 

visual and mnemonic preferred location we report does not appear at odds with 

their findings. 

A recent study by Kiani et al. (Kiani et al., 2015) took a novel approach to 

investigating electrophysiological topography in dLPFC. Also using microelectrode 

arrays implanted in area 8a, they applied techniques similar to those used in 

determining resting state networks in fMRI experiments, and grouped neurons into 

modules based on shared variability in firing rate across entire sessions of 

experimental recordings. They found that the modules were anatomically distinct, 

and organized more on the basis of “common noise” than on task-related activity, 

even across different tasks. Given the difference in analytical techniques between 

their study and ours, it does not seem that the two sets of findings necessitate 

reconciliation. Indeed, considering our results together with theirs leads to a 

potential conclusion that task-related properties of neurons cluster independently 
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or are embedded within the modules that emerge as a result of intrinsic or task-

independent variability. 

Spatial representations are retinotopically organized across many primate 

visual areas (Van Essen et al., 1984; Maunsell and Van Essen, 1987). However, our 

data do not show such a strict organization within the area covered by the 

microelectrode arrays, despite the fact that we found non-random representation of 

the entire stimulus array distributed across the area. This strongly suggests that 

such a retinotopic organization is absent in the dLPFC. One possible explanation for 

this finding is that interactions between neurons representing different locations 

across the visual space through lateral connections are facilitated by the 

heterogeneity within a relative retinotopic arrangement. Supporting this claim, 

lateral connections between neurons in the dLPFC are limited to a few millimeters 

(Kritzer and Goldman-Rakic, 1995), and such connections may be critical to the 

implementation of delay activity dynamics during WM maintenance by ensembles 

of neurons (e.g., recurrent excitation and mutual inhibition) (Goldman-Rakic, 1995). 

Prior work from our laboratory has also found that networks of dLPFC neurons that 

maximize WM-related information span a larger anatomical area than predicted by 

the statistics of a randomly-sampled neuronal population (Leavitt et al., 2017c). Our 
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findings are also concordant with previous work indicating that the structure of 

spike count correlations seem to reflect a proposed coding scheme for WM networks 

in which narrow range excitation and wider range inhibition are critical to the 

maintenance of the representations (Camperi and Wang, 1998; Compte et al., 2000; 

Leavitt et al., 2013). 

3.5.2 Potential Origins of Quadrantic Biases in Visual and Mnemonic Space  

Previous studies investigating meridian effects in WM have typically focused on 

WM capacity independence between the left and right hemifields, and all found 

some degree of hemifield independence at behavioral and/or physiological levels 

(Vogel and Machizawa, 2004; Delvenne, 2005; Buschman et al., 2011; Delvenne et 

al., 2011; Matsushima and Tanaka, 2014). Although these experiments were 

designed to address WM capacity, their results can be interpreted as demonstrating 

a vertical meridian effect in visual mnemonic space, albeit within a context 

constrained by a binary parameterization of the space. Our results demonstrate the 

existence of a vertical meridian effect in a more sophisticated model of visual 

mnemonic space, and specify the spatial structure and variability of this 

phenomenon. 
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We found that mnemonic representations of a given location are more similar 

to other locations within the same quadrant than to equidistant locations that lie 

across a meridian, at both the single neuron and population levels. One 

interpretation of this finding is that visual and memory fields adjacent to a 

meridian extend further in the same quadrant in which the field’s epicenter is 

located than across the meridian. The literature on multi-dimensional visual and 

memory field characteristics of neurons in area 8a is limited (Rainer et al., 1998).  

It is possible that the biases in the representations of visuo-mnemonic space 

reported here result from biases in the structure of receptive fields in areas 

upstream from dLPFC area 8a. For example, receptive fields in visual striate and 

extrastriate areas are retinotopically organized, are constrained to the contralateral 

visual hemifield, and their size is smallest in the fovea and increases proportionally 

to eccentricity (Virsu and Rovamo, 1979; Van Essen et al., 1984; Kandel et al., 

2000). However, in areas downstream from unimodal visual cortices, such as the 

dLPFC, this organization changes. Neurons mainly respond to visual stimuli that 

are behaviorally relevant, and receptive fields are located in both visual hemifields 

(Suzuki and Azuma, 1983; Boch and Goldberg, 1989). Interestingly, bilateral 

representation of the visual field does not start de-novo in dLPFC; areas upstream 
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along both the dorsal and ventral pathways, such as medial superior temporal 

(MST) and Inferior temporal (IT), also show bilateral receptive fields (Gross et al., 

1969; Desimone et al., 1984; Komatsu and Wurtz, 1988; Raiguel et al., 1997). 

One possible explanation for the vertical meridian bias observed in our data is 

that the contralateral hemifield representation bias present in visual areas is 

“passed on” to neurons in area 8a. This explanation could be extended to the 

observed quadrantic bias, as vertical asymmetries are known to exist along the 

visual system; a greater area of the LGN, V1, and MT are devoted to representing 

the inferior half of the visual field (Connolly and Van Essen, 1984; Van Essen et al., 

1984; Maunsell and Van Essen, 1987). These anatomical properties have been 

proposed as the reason why spatial frequency perception is superior along the 

inferior portion of the vertical meridian relative to the superior portion, and the 

origin of the BOLD signal asymmetries in human V1 and V2 that mirror the 

behavioral phenomenon (Carrasco et al., 2001; Liu et al., 2006; Abrams et al., 2012).  

It is surprising that the strength of the horizontal and vertical meridian effects 

are similar for neurons with central preferred locations, given the contralateral 

representation bias that is ubiquitous across the brain. It is still possible that this 

contralateral representation bias underlies the lack of a significant horizontal 
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meridian effect for neurons with peripheral preferred locations. However, the lack of 

a significant effect could also be due to an insufficiently large sample of neurons; we 

obtained only 21 neurons with peripheral preferred locations along the horizontal 

meridian, compared to 42 neurons for the vertical meridian. 

One may speculate that the bias in WM representations results directly from a 

bias in visual representations, perhaps due to the overlap in populations of neurons 

representing visual and mnemonic information (Supplementary Figure 3.1) 

(Constantinidis et al., 2001b). This is plausible, but the increased strength of the 

quadrantic bias during the delay epoch relative to during stimulus presentation 

indicates that this explanation is incomplete, and that WM maintenance amplifies 

existing representational biases and/or creates novel ones entirely.  

Another series of studies in humans and non-human primates posits that WM-

based estimates of spatial location rely on two distinct processes: an unbiased fine-

grain representation of visual space, and a categorical representation of a larger 

region bounded by landmarks or natural divisions in visual space (e.g. meridians) 

that encompasses the fine-grain values (Huttenlocher et al., 1991; 2004; Merchant 

et al., 2004; Haun et al., 2005). The fine-grain information is subject to temporal 

decay, and thus over longer memory delays the representation becomes biased 
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toward category (the quadrant centers, in the present study). While such a system 

introduces bias, it can also reduce trial-to-trial variability to a degree that yields a 

net accuracy benefit. One experimentally-verified prediction of this model is that 

the categorical bias grows stronger as the memory delay increases (Merchant et al., 

2004). We did not observe this phenomenon in the behavior or the neuronal activity 

in the present experiment, which we ascribe to the length of the memory delay in 

our task. Our memory delay ranged from 494-1500ms, while the memory delay in 

the prior study ranged from 500-5000ms. It is likely that the strength of the bias did 

not change sufficiently to be detectable in our shorter time window. The limited 

time windows for analysis of single neuron firing rates could also have yielded 

noisier firing rate estimations that obscured an underlying difference. Nevertheless, 

given the PFC’s involvement in WM and categorical representation of continuous 

quantities (Freedman and Miller, 2008; Merchant et al., 2011; Goodwin et al., 2012), 

further studies with longer memory delays may reveal neurophysiological correlates 

of the  behavioral phenomena we were unable to find in the present study. 

3.5.3 Alternative Factors Affecting Memory-Guided Saccades 

The amplitude of memory-guided saccades is known to be influenced by a number of 

factors, including illumination (Goffart et al., 2006), training (Visscher et al., 2003), 
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and orbital position of the eyes (Barton and Sparks, 2001), though it is unlikely 

these factors significantly biased eye movement data in this experiment. Head 

orientation, the location of the subject relative to the screen, and the location of the 

fixation point on the screen were all constant within and across sessions, thus there 

should have been little variation in orbital position and its consequences on 

saccades (Barton and Sparks, 2001) should be minimal. Subjects were tested on the 

same 16 locations throughout training and recording, thus the interactions between 

trained and novel remembered saccade targets described in (Visscher et al., 2003) 

are not present in this experiment. While previous studies have reported an upward 

bias in memory-guided saccades that decreases with the vertical position of the 

target (Gnadt et al., 1991; White et al., 1994; Goffart et al., 2006), this effect is 

largely eliminated in the presence of dim illumination (6.5×10-3-0.05 cd/m2) (Gnadt 

et al., 1991; Goffart et al., 2006) comparable to that generated by the projector in 

this task. As such, our experimental design seems to control for factors known to 

affect the amplitude of memory-guided saccades. 

  



Chapter 3. A Quadrantic Bias in PFC WM Representation 

 123 

3.5.4 Meridian Effects Elucidate the Relationships Between WM, Attention, and 

Motor Activity 

Substantial literature exists on the overlap and interaction between the behavioral 

effects and neural substrates of attention and WM (LaBar et al., 1999; Awh and 

Jonides, 2001; de Fockert, 2001; Miller and Cohen, 2001; Lebedev et al., 2004; Awh 

et al., 2006; Postle, 2006; Theeuwes et al., 2009; Ikkai and Curtis, 2011; Mendoza et 

al., 2011; Gazzaley and Nobre, 2012). Indeed, there is good reason to believe that 

much of the neural activity in dLPFC that is traditionally considered WM 

maintenance-related can instead be attributed to the attentional component of WM 

tasks (Owen et al., 1996; Lebedev et al., 2004). As such, our finding of quadrantic 

divisions of visual mnemonic space could share neural origins with the quadrant-

independent capacity for multi-object attention (Carlson et al., 2007) and the 

mitigating effects of meridians on visual crowding (Liu et al., 2009). 

Perceptual biases relative meridians have been reported in previous behavioral 

studies. For example, it is well known that subjects overestimate the angle/direction 

relative to a meridian during orientation and motion direction discrimination tasks, 

a phenomenon known as motion or orientation repulsion (Loffler and Orbach, 2001; 

Changizi et al., 2008; Dakin et al., 2010). This effect may be related to our findings 
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that perceptual and mnemonic representations are “repulsed” away from main 

meridians. 

Three decades ago, Rizzolatti and colleagues found that shifts of attention 

across a meridian cause substantially larger reaction time penalties than 

equidistant shifts of attention within a quadrant (Rizzolatti et al., 1987). This 

finding contributed to the basis of the premotor theory of attention (Rizzolatti et al., 

1987; Sheliga et al., 1994). Many of the theory’s claims about the relationship 

between eye movements and attention have been called into question by later 

studies, yielding a refined version of the theory that is best summarized as “saccade 

preparation is necessary for exogenous attentional orienting, whereas endogenous 

attentional orienting is entirely independent of motor control” (Smith and Schenk, 

2012). Interestingly, meridian effects seem to only exist for endogenous attention 

and not exogenous attention (Reuter-Lorenz and Fendrich, 1992; Botta et al., 2010). 

We consider the presence of mnemonic spatial meridian effects as evidence that 

dLPFC delay activity is not principally motor-related because, as mentioned before, 

meridian effects only exist for endogenous attention, which acts independently of 

motor control (Smith and Schenk, 2012). Furthermore, because attentional 

meridian effects are only observed in endogenous attention, our observation of 
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quadrantic biases in spatial WM representations specifies an overlap between WM 

and endogenous attention, not exogenous attention. 

3.5.5 rsc and WM Tasks 

Previous studies in dLPFC have reported varying degrees of correlated activity 

during WM tasks (Funahashi and Inoue, 2000; Constantinidis et al., 2001a; 

Constantinidis and Goldman-Rakic, 2002; Funahashi, 2006; Qi and Constantinidis, 

2012; Katsuki and Constantinidis, 2013; Wimmer et al., 2014; Leavitt et al., 2017c). 

One prior study found that cross-correlation strength and significance was 

positively correlated with tuning similarity during memory (Constantinidis et al., 

2001a), another found a non-significant trend that task epoch affects rsc 

(Constantinidis and Goldman-Rakic, 2002), and a third demonstrated rsc differences 

between animals naïve to and proficient at a spatial WM task (Qi and 

Constantinidis, 2012). Recently, analysis by Wimmer and colleagues found that rsc 

varied during memory in a tuning-dependent manner (Wimmer et al., 2014) 

indicative of a continuous ‘bump attractor’ representation scheme (Compte et al., 

2000) of spatial WM. We found a similar relationship between tuning and rsc during 

the fixation epoch. However, we found that rsc during the delay epoch only changes 

as a function of tuning for neurons that have preferred memory locations on the 
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same side of the vertical meridian (i.e. within the same left-right hemifield). It is 

possible that the observed effects of tuning on rsc in the aforementioned studies were 

dominated by the within-hemifield effect, which can be explained by the higher 

proportion of contralateral-selective neurons in this region (Funahashi and Kubota, 

1994; Goldman-Rakic, 1995; Funahashi and Takeda, 2002; Lennert and Martinez-

Trujillo, 2013).  

3.5.6 A Hemifield-Independent WM Mechanism 

We found that rsc during the delay epoch between intraquadrant neuron pairs was 

significantly larger than rsc between neurons with response peaks in the same left-

right hemifield and in different top-bottom hemifields. However, we did not find any 

significant difference in rsc between neuron pairs with response peaks on opposite 

sides of the vertical meridian. Our interpretation of this finding is that WM 

maintenance results in inhibition between neurons with response peaks in the same 

left-right hemifield and in different top-bottom hemifields. The finding that the 

horizontal meridian exerts the strongest effect on the rsc structure can synthesize 

two well characterized, but previously unrelated findings regarding neuronal 

correlates and behavioral phenomena in WM. The first is a model network 

architecture that stabilizes WM representations across time (Polk et al., 2012). One 
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hallmark of this architecture is that correlated activity between neurons that 

maintain similar WM representations (e.g. locations within the same visual 

quadrant) is stronger than correlated activity between neurons that store different 

kinds of WMs (e.g. locations in different visual quadrants). The second finding is 

that WM resources are independent for the left and right hemifields of visual space 

(Delvenne, 2005; Buschman et al., 2011; Alvarez et al., 2012; Matsushima and 

Tanaka, 2014). Combining both of these factors yields the prediction that the 

correlation structure indicative of a WM-stabilizing architecture should be present 

separately for each left/right hemifield. Indeed, our data match this prediction, 

advancing a model of WM that integrates a model network architecture with known 

behavioral and neural biases.  

3.6 Conclusion 

Our results indicate that dLPFC contains a non-retinotopic, topographic 

organization of spatial WM representations likely shaped to support interactions 

between neurons that are essential to the origin of delay activity in the absence of 

visual inputs. This is supported by our observation of a pattern of correlated 

variability that is thought to be a hallmark of a mechanism for temporally 

stabilizing WM representations. Our results also provide a neural correlate for 
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known quadrantic biases in human and monkey visuo-spatial WM. Finally, our 

results suggest revising current models of WM to accommodate the non-linearities 

of visual mnemonic space representation in dLPFC. 
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3.8 Supplemental Data 

 

Supplementary Figure 3.1: Stimulus Selectivity. Similar to Figure 3.1, but for the 
stimulus epoch. (A) Example stimulus-selective neurons. (B) Distributions of 
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neurons’ preferred locations during the stimulus epoch. (C) Quantities of exclusively 
stimulus-selective, exclusively delay-selective, and delay- & stimulus-selective 
neurons. 
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Supplementary Figure 3.2: Quadrantic Bias in Firing Rates for Single Neurons with 
Peripheral Preferred Locations During the Delay Epoch. Similar to Figure 3.3B, but 
for neurons with peripheral preferred locations in the delay epoch. Firing rates on 
the ordinate (y) axis are z-scored across all 16 locations. Notches indicate 95% 
comparison intervals of the median (see Methods). Edges of boxes extend one 
quartile from median. Whiskers extend to ~99.3% distribution coverage. Results for 
the: (A) vertical meridian, and (B) horizontal meridian. 
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Supplementary Figure 3.3: Quadrantic bias in data without repeated recordings 
from same electrodes. Repeated sessions on the same array electrodes were 
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removed, such that there was only one session per electrode. Analyses identical to 
those in Figure 3.3 and Supplementary Figure 3.2 were performed. (A) Quadrantic 
bias in single neuron firing rates pooled across preferred (grey), intraquadrant 
(green), and extraquadrant (red) locations. * P < 0.05, Wilcoxon rank-sum test, 
Hochberg-corrected. (B) Similar as in (A), but the analysis is separate for each 
location lying adjacent to a neuron’s preferred (grey) location. (C) Similar to (B), but 
for peripheral preferred locations lying adjacent to the vertical meridian, and the 
(D) horizontal meridian. 
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Supplementary Figure 3.4: Quadrantic Bias in Firing Rates for Single Neurons with 
Preferred Locations in the Periphery During the Stimulus Epoch. As in Figure 3.3 
and Supplementary Figure 3.2, firing rates on the ordinate (y) axis are z-scored 
across all 16 locations. Notches indicate 95% comparison intervals of the median. 
Edges of boxes extend one quartile from median. Whiskers extend to ~99.3% 
distribution coverage. (A) Quadrant effect analyses for neurons with peripheral 
preferred locations along the vertical meridian, and (B) for neurons with peripheral 
preferred locations along the horizontal meridian. 
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Supplementary Figure 3.5: Quadrantic Bias in Ensemble Representation for Each 
Eccentricity, Meridian, and Epoch. Similar to Figure 3.6. Shaded regions indicate 
95% confidence intervals of the proportion. * P < 0.05, χ2 test, Hochberg-corrected. 
(A) The vertical meridian biases representations of stimuli at the center locations of 
the array, but not peripheral locations during the stimulus epoch. (B) The same as 
(A), but for the horizontal meridian. An effect is visible for both central and 
peripheral representations. (C) The same as (A), but during the delay epoch. Both 
the central and peripheral representations are biased by the vertical meridian. (D) 
The same as (C), but for the horizontal meridian. A meridian bias is present in 
representations of central and peripheral locations. 
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Supplementary Figure 3.6: Quadrantic Bias in Saccade Endpoints in Long vs. Short 
Memory Delays. Similar to Figure 3.7B, except trials are split into short memory 
delay trials (≤ 1000ms, red), and long memory delay trials (> 1000ms, purple). The 
proportion of both subjects’ saccades falling inside the grey box (y-axis) is shown for 
each quadrant (x-axis). Shaded regions indicate 95% confidence intervals of the 
proportion. ns P > 0.05, χ2 test, Hochberg-corrected. 
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Supplementary Figure 3.7: Quadrantic Bias in Single Neuron Firing Rates for 
Neurons with Central Preferred Locations in Early vs. Late Delay Epoch. (A) 
Format is identical to Figure 3.3B, except only the period of 151-450ms after the 
beginning of the delay epoch is analyzed. (B) Identical to (A), except only the final 
200ms of the delay epoch are analyzed. 
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Supplementary Figure 3.8: Quadrantic Bias in Single Neuron Firing Rates for 
Neurons with Peripheral Preferred Locations in Early vs. Late Delay Epoch. 
Format is identical to Supplementary Figure 3.7, except for neurons with preferred 
locations in the periphery. (A) Firing rates during the early delay epoch for neurons 
with preferred locations along the vertical meridian. (B) Firing rates during the late 
delay epoch for neurons with preferred locations along the vertical meridian. (C) 
Firing rates during the early delay epoch for neurons with preferred locations along 
the horizontal meridian. Note that there are no significant differences between 
intraquadrant vs. extraquadrant locations. (D) Firing rates during the late delay 
epoch for neurons with preferred locations along the horizontal meridian. Note that 
there are no significant differences between intraquadrant vs. extraquadrant 
locations. 
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Model Summary After Removing Collinear Terms 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .330a .109 .109 .942816204 

2 .341b .116 .116 .938875728 

3 .351c .123 .123 .935265256 

4 .354d .125 .125 .934261358 

5 .360e .129 .129 .931989960 

6 .360f .129 .129 .931966285 

7 .360g .130 .130 .931775578 

 

a. Predictors: (Constant), euclidean_distance 

b. Predictors: (Constant), euclidean_distance, angle_difference 

c. Predictors: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian 

d. Predictors: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian 

e. Predictors: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian 

f. Predictors: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian, eccentricity_difference 

g. Predictors: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian, eccentricity_difference, angle_difference_x_eccentricity_difference 
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Coefficients After Removing Collinear Termsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B 
Std. 

Error Beta Tolerance VIF 

1 (Constant) .672 .008 
 

79.368 .000 
  

euclidean_distance -.329 .004 -.330 -88.415 .000 1.000 1.000 

2 (Constant) .670 .008 
 

79.520 .000 
  

euclidean_distance -.209 .006 -.210 -32.880 .000 .340 2.944 

angle_difference -.003 .000 -.148 -23.213 .000 .340 2.944 

3 (Constant) .734 .009 
 

82.743 .000 
  

euclidean_distance -.181 .006 -.182 -28.015 .000 .327 3.061 

angle_difference -.005 .000 -.266 -32.158 .000 .200 5.004 

crosses_horizontal_meridi
an_x_crosses_vertical_me
ridian 

.293 .013 .127 22.262 .000 .420 2.379 

4 (Constant) .730 .009 
 

82.395 .000 
  

euclidean_distance -.179 .006 -.179 -27.697 .000 .326 3.064 

angle_difference -.004 .000 -.233 -26.731 .000 .179 5.576 

crosses_horizontal_meridi
an_x_crosses_vertical_me
ridian 

.314 .013 .136 23.669 .000 .413 2.423 
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crosses_horizontal_meridi
an 

-.121 .010 -.060 -11.768 .000 .518 1.929 

5 (Constant) .743 .009 
 

83.736 .000 
  

euclidean_distance -.168 .006 -.169 -26.039 .000 .324 3.089 

angle_difference -.002 .000 -.117 -10.686 .000 .114 8.771 

crosses_horizontal_meridi
an_x_crosses_vertical_me
ridian 

.443 .015 .192 29.312 .000 .317 3.152 

crosses_horizontal_meridi
an 

-.357 .017 -.179 -21.218 .000 .192 5.204 

crosses_vertical_meridian -.279 .016 -.140 -17.693 .000 .219 4.569 

6 (Constant) .743 .009 
 

83.744 .000 
  

euclidean_distance -.169 .006 -.170 -26.121 .000 .322 3.109 

angle_difference -.002 .000 -.116 -10.588 .000 .114 8.787 

crosses_horizontal_meridi
an_x_crosses_vertical_me
ridian 

.442 .015 .192 29.276 .000 .317 3.153 

crosses_horizontal_meridi
an 

-.357 .017 -.179 -21.208 .000 .192 5.205 

crosses_vertical_meridian -.279 .016 -.139 -17.676 .000 .219 4.569 

eccentricity_difference -.010 .005 -.008 -2.061 .039 .994 1.006 

7 (Constant) .740 .009 
 

83.381 .000 
  

euclidean_distance -.169 .006 -.170 -26.100 .000 .322 3.109 

angle_difference -.002 .000 -.115 -10.482 .000 .114 8.791 
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crosses_horizontal_meridi
an_x_crosses_vertical_me
ridian 

.441 .015 .192 29.236 .000 .317 3.153 

crosses_horizontal_meridi
an 

-.356 .017 -.178 -21.202 .000 .192 5.205 

crosses_vertical_meridian -.278 .016 -.139 -17.677 .000 .219 4.569 

eccentricity_difference -.051 .009 -.038 -5.504 .000 .287 3.484 

angle_difference_x_eccent
ricity_difference 

.000 .000 .036 5.213 .000 .287 3.480 

 

a. Dependent Variable: firing_rate 

 

 

Excluded Variables After Removing Collinear Termsa a 

Model Beta In t Sig. 

Partial 
Correlatio

n 

Collinearity Statistics 

Tolerance VIF 
Minimum 
Tolerance 

1 angle_difference -.148b -23.213 .000 -.091 .340 2.944 .340 

eccentricity_difference -.015b -4.068 .000 -.016 .999 1.001 .999 

crosses_horizontal_meridi
an 

-.084b -18.698 .000 -.074 .687 1.455 .687 

crosses_vertical_meridian -.028b -6.497 .000 -.026 .756 1.323 .756 

eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.005b 1.274 .203 .005 .997 1.003 .997 
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eccentricity_difference_x_c
rosses_vertical_meridian 

-.004b -1.126 .260 -.004 .997 1.003 .997 

angle_difference_x_eccent
ricity_difference 

-.001b -.180 .857 -.001 .997 1.003 .997 

crosses_horizontal_meridi
an_x_crosses_vertical_mer
idian 

.009b 2.109 .035 .008 .715 1.400 .715 

2 eccentricity_difference -.009c -2.467 .014 -.010 .994 1.006 .338 

crosses_horizontal_meridi
an 

-.044c -8.620 .000 -.034 .528 1.894 .261 

crosses_vertical_meridian .017c 3.587 .000 .014 .622 1.609 .279 

eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.008c 2.031 .042 .008 .996 1.004 .339 

eccentricity_difference_x_c
rosses_vertical_meridian 

.000c -.093 .926 .000 .995 1.005 .338 

angle_difference_x_eccent
ricity_difference 

.003c .832 .405 .003 .995 1.005 .338 

crosses_horizontal_meridi
an_x_crosses_vertical_mer
idian 

.127c 22.262 .000 .088 .420 2.379 .200 

3 eccentricity_difference -.008d -2.168 .030 -.009 .994 1.006 .199 

crosses_horizontal_meridi
an 

-.060d -11.768 .000 -.046 .518 1.929 .179 

crosses_vertical_meridian -.007d -1.407 .159 -.006 .591 1.693 .191 

eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.008d 2.048 .041 .008 .996 1.004 .200 
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eccentricity_difference_x_c
rosses_vertical_meridian 

.001d .205 .837 .001 .995 1.005 .199 

angle_difference_x_eccent
ricity_difference 

.004d .984 .325 .004 .995 1.005 .200 

4 eccentricity_difference -.008e -2.200 .028 -.009 .994 1.006 .179 

crosses_vertical_meridian -.140e -17.693 .000 -.070 .219 4.569 .114 

eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.006e 1.741 .082 .007 .996 1.004 .179 

eccentricity_difference_x_c
rosses_vertical_meridian 

.002e .485 .627 .002 .995 1.005 .179 

angle_difference_x_eccent
ricity_difference 

.003e .943 .345 .004 .995 1.005 .179 

5 eccentricity_difference -.008f -2.061 .039 -.008 .994 1.006 .114 

eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.007f 1.976 .048 .008 .996 1.005 .114 

eccentricity_difference_x_c
rosses_vertical_meridian 

.001f .332 .740 .001 .994 1.006 .114 

angle_difference_x_eccent
ricity_difference 

.004f 1.063 .288 .004 .995 1.005 .114 

6 eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.025g 4.836 .000 .019 .501 1.997 .114 

eccentricity_difference_x_c
rosses_vertical_meridian 

.013g 2.518 .012 .010 .500 2.000 .114 

angle_difference_x_eccent
ricity_difference 

.036g 5.213 .000 .021 .287 3.480 .114 
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7 eccentricity_difference_x_c
rosses_horizontal_meridia
n 

.012h 1.688 .091 .007 .259 3.861 .114 

eccentricity_difference_x_c
rosses_vertical_meridian 

-.009h -1.245 .213 -.005 .281 3.560 .114 

 

a. Dependent Variable: firing_rate 

b. Predictors in the Model: (Constant), euclidean_distance 

c. Predictors in the Model: (Constant), euclidean_distance, angle_difference 

d. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian 

e. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian 

f. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian 

g. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian, eccentricity_difference 

h. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
crosses_horizontal_meridian_x_crosses_vertical_meridian, crosses_horizontal_meridian, 
crosses_vertical_meridian, eccentricity_difference, angle_difference_x_eccentricity_difference 

 

Final Model Summary Including Collinear Terms 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 

14 .375n .141 .141 .925767433 
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n. Predictors: (Constant), euclidean_distance, angle_difference, 
euclidean_distance_x_angle_difference, 
angle_difference_x_crosses_horizontal_meridian, crosses_vertical_meridian, 
crosses_horizontal_meridian, euclidean_distance_x_crosses_vertical_meridian, 
eccentricity_difference, euclidean_distance_x_eccentricity_difference, 
angle_difference_x_crosses_vertical_meridian 

 

 

 

Final Model Coefficients Including Collinear Terms a 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B 
Std. 

Error Beta 
Toler
ance VIF 

14 (Constant) .990 .012 
 

79.955 .000 
  

euclidean_distance -.436 .013 -.437 -33.210 .000 .077 12.913 

angle_difference -.006 .000 -.303 -16.890 .000 .042 24.023 

euclidean_distance_x_a
ngle_difference 

.002 .000 .387 15.611 .000 .022 45.779 

angle_difference_x_cro
sses_horizontal_meridi
an 

.001 .000 .100 4.751 .000 .031 32.686 

crosses_vertical_meridi
an 

-.185 .031 -.092 -5.918 .000 .055 18.165 

crosses_horizontal_mer
idian 

-.261 .031 -.131 -8.548 .000 .058 17.361 
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euclidean_distance_x_c
rosses_vertical_meridia
n 

.089 .017 .124 5.094 .000 .023 44.102 

eccentricity_difference -.149 .016 -.111 -9.239 .000 .093 10.762 

euclidean_distance_x_e
ccentricity_difference 

.068 .007 .109 9.032 .000 .093 10.774 

angle_difference_x_cro
sses_vertical_meridian 

-.001 .000 -.044 -1.998 .046 .027 36.562 

 

a. Dependent Variable: firing_rate 

 

Final Model Excluded Variables Including Collinear Termsa 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF 
Minimum 
Tolerance 

14 eccentricity_difference_x_cr
osses_horizontal_meridian 

.001o .191 .848 .001 .321 3.112 .022 

eccentricity_difference_x_cr
osses_vertical_meridian 

-.007o -1.167 .243 -.005 .343 2.912 .022 

angle_difference_x_eccentri
city_difference 

-.015o -1.235 .217 -.005 .086 11.667 .022 

crosses_horizontal_meridia
n_x_crosses_vertical_merid
ian 

.018o .833 .405 .003 .028 35.401 .011 

euclidean_distance_x_cross
es_horizontal_meridian 

-.052o -1.759 .079 -.007 .015 65.617 .009 
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o. Predictors in the Model: (Constant), euclidean_distance, angle_difference, 
euclidean_distance_x_angle_difference, angle_difference_x_crosses_horizontal_meridian, 
crosses_vertical_meridian, crosses_horizontal_meridian, euclidean_distance_x_crosses_vertical_meridian, 
eccentricity_difference, euclidean_distance_x_eccentricity_difference, 
angle_difference_x_crosses_vertical_meridian 

Supplementary Table 3.1: Stepwise regression indicates significance of meridian 
crossings. 
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CHAPTER 4  
CORRELATED VARIABILITY MODIFIES WORKING MEMORY 

FIDELITY IN PRIMATE PREFRONTAL NEURONAL 

ENSEMBLES 
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The previous two studies demonstrated the presence of rsc in area 8a during 

different behavioral states, including WM maintenance. rsc can dramatically modify 

the amount of information that can be decoded from a neuronal ensemble, but it is 

unknown whether the pattern of rsc associated with WM maintenance also affects 

WM coding. More generally, we know very little about how ensemble of neurons in 

8a represent WM, and how it differs from single neuron representations. We found 

that an ensemble’s rsc structure could facilitate or impair the readout of WM 

representations, depending on the size of the ensemble and tuning properties of its 

constituent neurons. We also that neurons with poor WM selectivity could still 

improve coding when part of an ensemble by shaping the ensemble’s rsc structure. 

This chapter is adapted from Leavitt, M., Pieper, F., Sachs, A., Martinez-Trujillo, 

J.C. (2017) Correlated variability modifies working memory fidelity in primate 

prefrontal neuronal ensembles, PNAS, 114(12): E294-E205. 
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4.1 Abstract 

Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory 

(WM) representations via sustained firing, a phenomenon hypothesized to arise 

from recurrent dynamics within ensembles of interconnected neurons. Here we 

tested this hypothesis by using microelectrode arrays to examine spike count 

correlations (rsc) in LPFC neuronal ensembles during a spatial WM task. We found 

a pattern of pairwise rsc during WM maintenance indicative of stronger coupling 

between similarly-tuned neurons and increased inhibition between dissimilarly-

tuned neurons. We then used a linear decoder to quantify the effects of the high-

dimensional rsc structure on information coding in the neuronal ensembles. We 

found that the rsc structure could facilitate or impair coding, depending on the size 

of the ensemble and tuning properties of its constituent neurons. A simple 

optimization procedure demonstrated that near-maximum decoding performance 

could be achieved using a relatively small number of neurons. These WM-optimized 

subensembles were more rsignal-diverse and anatomically dispersed than predicted by 

the statistics of the full recorded population of neurons, and they often contained 

neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the 

ensemble’s rsc structure. We observed a pattern of rsc between LPFC neurons 
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indicative of recurrent dynamics as a mechanism for WM-related activity, and the 

rsc structure can increase the fidelity of WM representations.  Thus, WM coding in 

LPFC neuronal ensembles arises from a complex synergy between single neuron 

coding properties and multidimensional, ensemble-level phenomena. 

4.2 Introduction 

To interact with a complex, dynamic environment, organisms must be capable of 

maintaining and manipulating information that is no longer available to their 

sensory systems. This capability, when applied transiently (i.e. for milliseconds to 

seconds), is referred to as working memory (WM) (Baddeley and Hitch, 1974)–a 

hallmark of intelligence and crucial component of goal-directed behavior (Miller and 

Cohen, 2001). In 1949, Hebb postulated that sustained neuronal activity in the 

absence of stimulus input could serve as the neural substrate for WM (Hebb, 2005). 

Fuster and Alexander later discovered neurons in the lateral prefrontal cortex 

(LPFC) of monkeys that exhibited sustained firing during WM tasks (Fuster and 

Alexander, 1971). Subsequent neurophysiological studies have corroborated that 

neuronal activity in the LPFC and other regions can represent WM for visual-

mnemonic space (Batuev, 1986; Gnadt and Andersen, 1988; Funahashi et al., 1989), 
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as well as non-spatial visual features (Miller et al., 1996; Mendoza-Halliday et al., 

2014; Riley and Constantinidis, 2015). 

Electrophysiological studies of spatial WM have traditionally relied on 

recording from one or a few neurons simultaneously (Riley and Constantinidis, 

2015). However, the neuronal computations that underlie sophisticated behaviors 

such as WM require the coordinated activity of many neurons within and across 

brain networks (Quian Quiroga and Panzeri, 2009). We currently lack a clear 

understanding of how single neuron coding properties scale to neuronal ensembles. 

Can the properties of an ensemble be predicted by aggregating the individually and 

independently measured properties of its constituent neurons?  The answers to this 

and related questions hinge on how ensembles are affected by phenomena that 

emerge from interactions between neurons.  

The sustained activity presumed to underlie WM maintenance is thought to 

be achieved by increasing the strength of recurrent excitation and lateral inhibition 

between neurons within an ensemble (Amit and Brunel, 1997; Camperi and Wang, 

1998; Compte et al., 2000; Durstewitz et al., 2000; Wang, 2001; Constantinidis and 

Wang, 2004; Wimmer et al., 2014). These dynamics should modify patterns of 

correlated firing between neurons in a manner dependent on differences in their 
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tuning properties. Such a pattern can be quantitatively characterized by two 

measurements: The first is signal correlation (rsignal), the similarity of two neurons’ 

responses to a set of different stimuli or experimental conditions. The second is 

spike count (or noise) correlations (rsc), the similarity in the variability of two 

neurons’ responses to the same stimulus or experimental condition (Averbeck et al., 

2006). 

Given a fixed ensemble of neurons (and thus a constant rsignal structure), 

changes in rsc can have profound effects on information coding (Shadlen and 

Newsome, 1994; Zohary et al., 1994; Abbott and Dayan, 1999; Averbeck et al., 2006; 

Cohen and Kohn, 2011; Moreno-Bote et al., 2014). For example, spatial attention 

improves neural coding in visual cortex primarily by reducing rsc (Cohen and 

Maunsell, 2009; Mitchell et al., 2009; Tremblay et al., 2014). Another study reported 

that increased rsc improved perceptual discrimination in macaque area S2 (Romo et 

al., 2003). These results are difficult to extend to WM coding in LPFC. Furthermore, 

there are relatively few studies investigating rsc in the LPFC (Constantinidis et al., 

2001a; Constantinidis and Goldman-Rakic, 2002; Cohen and Kohn, 2011; Qi and 

Constantinidis, 2012; Katsuki et al., 2014; Tremblay et al., 2014; Markowitz et al., 

2015); and only one of these studies directly examined the effects of rsc on 
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information coding (Tremblay et al., 2014). Prior results examining pairwise 

correlations are also difficult to extrapolate to larger neuronal ensembles, which 

have a complex, multidimensional rsc structure that cannot be characterized by 

pairwise measurements alone (Moreno-Bote et al., 2014). Currently it remains 

unknown whether and how rsc structure modulates the fidelity of WM coding in 

LPFC neuronal ensembles. 

We used microelectrode arrays to record from neuronal ensembles in LPFC of 

two monkeys while they performed an oculomotor delayed-response task, and 

assessed ensemble information content using a linear decoder. We found that rsc 

varied as a function of rsignal during WM maintenance in a manner predicted by a 

recurrent-excitation and lateral-inhibition scheme. Using all simultaneously 

recorded neurons, the decoder could reliably predict which of 16 locations was being 

remembered. We also devised procedures to systematically investigate how WM 

coding varies across the “configuration space” of potential neuronal ensembles. 

Removing the rsc structure could increase or decrease the information content of 

neuronal ensembles across the configuration space. However, the intrinsic rsc 

structure improved WM coding in smaller neuronal sub-ensembles of neurons 

optimized for WM representation. These optimized ensembles had a stereotyped 
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rsignal distribution with peaks at zero and extreme negative values, and spanned 

farther across the cortical surface than predicted by the statistics of the full 

population of recorded LPFC units. Finally, we observed individual units that did 

not encode WM in isolation (“non-selective” neurons), but still contributed to WM 

coding when part of an ensemble by altering the rsc structure. 

4.3 Results 

Two adult male Macaca fascicularis (subjects ‘JL’ and ‘F’) performed an oculomotor 

delayed-response task (Figure 4.1a) while we recorded from neuronal ensembles in 

left LPFC area 8A, anterior to the arcuate sulcus and posterior to the principal, 

using chronically-implanted 96-channel microelectrode arrays (Figure 4.1b). The 

neural correlates of WM for spatial locations have been extensively documented in 

this brain region(Riley and Constantinidis, 2015). The target stimulus could appear 

at any one of 16 possible locations, arranged in a uniformly spaced 4×4 grid around 

a central fixation point. We collected spike data from a total of 545 single- and 

multiunits across 12 recording sessions, out of which 417 (76%) exhibited sustained 

activity and selectivity during the delay epoch (P < 0.05, Kruskal-Wallis; firing rate 

× location—see Materials and Methods). We included both multi- and single units in 

our analyses, as in similar previous studies (Cohen and Maunsell, 2009; Cohen and 
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Kohn, 2011; Ruff and Cohen, 2014; Tremblay et al., 2014). A unit’s preferred 

location during a given epoch was defined as the location that elicited the largest 

response averaged over that epoch (Figure 4.1c & d). Subjects made incorrect 

choices about the stimulus location in <1% of completed trials. Only correct, 

completed trials were included for analysis. 

Figure 4.1: Task, method, and single-cell data. (a) Overview of oculomotor delayed-
response task. The dashed circles indicate potential cue locations, and are shown for 
illustrative purposes only and are not present in the task. The arrow represents the 
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correct saccade direction. (b) Array implantation sites and anatomical landmarks in 
both subjects. (c) Example delay-selective neuron. (d) Distribution of delay-selective 
units’ preferred locations. FIX, fixation; ROI, region of interest; STIM, stimulus. 

4.3.1 Task-related modulation of spike count correlations (rsc) 

We computed rsc between pairs of neurons (pairwise rsc—Materials and Methods) 

during the fixation, stimulus, and delay epochs. rsc can covary with firing rate (la 

Rocha et al., 2007; Cohen and Kohn, 2011), so to ensure that differences in rsc across 

epochs were not confounded by differences in firing rates, we implemented a 

distribution matching procedure (Materials and Methods). We replicated two 

findings from previous studies: mean pairwise rsc was significantly above zero in 

each task epoch (Figure 4.2a; P < 0.005 for all epochs, bootstrap test—Materials and 

Methods); and rsc varied as a function of tuning similarity, which we quantified as 

signal correlation between pairs of neurons during the delay epoch (rsignal—Materials 

and Methods; Figure 4.2b) (Constantinidis et al., 2001a; Constantinidis and 

Goldman-Rakic, 2002; Qi and Constantinidis, 2012; Katsuki et al., 2014; Wimmer et 

al., 2014; Markowitz et al., 2015). Specifically, we found that the median pairwise rsc 

was consistently larger for similarly-tuned neuron pairs (defined as rsignal > 0.25) as 

compared to dissimilarly-tuned pairs (defined as rsignal < -0.25) (P < 0.001 for all 

epochs, bootstrap test—Materials and Methods). We also found that mean pairwise 
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rsc was greater during the fixation and delay epochs as compared to the stimulus 

epoch (Figure 4.2a; P < 0.001 for both fixation vs. stimulus and delay vs. stimulus, 

bootstrap test). Most importantly, we found that the relationship between rsc and 

rsignal changed across task epochs (Figure 4.2b); specifically, median pairwise rsc for 

similarly-tuned neurons was larger during the delay epoch than during the fixation 

and stimulus epochs (P < 0.001 for both comparisons, bootstrap test; Figure 4.2c), 

and median pairwise rsc between dissimilarly-tuned neurons was lower during the 

stimulus and delay epochs than during the fixation epoch (P < 0.001 for both 

comparisons, bootstrap test; Figure 4.2c). These results indicate that WM 

maintenance modifies pairwise rsc in the LPFC in a manner consistent with a 

recurrent excitation, lateral inhibition scheme (Amit and Brunel, 1997; Camperi 

and Wang, 1998; Compte et al., 2000; Durstewitz et al., 2000; Wang, 2001; Laing et 

al., 2002; Constantinidis and Wang, 2004). 
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Figure 4.2: Measures of correlated variability and its effects on WM information in 
full ensembles. (a) Mean pairwise rsc (y-axis) across task epochs (x-axis), controlling 
for firing rate (Online Methods). The mean is computed across all 2000 subsampled 
distributions, and shaded regions are s.e.m. calculated using the sample size of a 
single subsampled distribution (n = 10,535 pairs). *P < 0.001, bootstrap test. (b) 
Mean rsc for each task epoch (y-axis) as a function of delay epoch rsignal (x-axis). The 
same subsampling procedure as in (a) was applied, then the rsc of each neuron pair 
was binned based on its corresponding rsignal, and the mean rsc computed in each bin. 
rsignal bins are size = 0.2, stepped by increments of 0.05. The shaded regions are 
s.e.m., calculated using the sample size of the corresponding rsignal bin. (c) Median rsc 
for similarly-tuned neuron pairs (rsignal > 0.25) and dissimilarly-tuned neuron pairs 
(rsignal < -0.25) in each task epoch. The colored region around each point represents 
the bootstrapped 99.9% confidence interval of the median, derived from 2000 
bootstrap iterations. Non-overlapping colored regions indicate P < 0.001, bootstrap 
test; however pairwise comparisons that are visually ambiguous have explicitly-
marked (*) significant differences. FIX, fixation; STIM, stimulus. 

4.3.2 Quantifying information content in neuronal ensembles using linear decoders 

Pairwise measurements of rsc are insufficient for predicting the effects of rsc

structure on ensemble information in large, multidimensional ensembles with 

heterogeneous tuning (Moreno-Bote et al., 2014). Furthermore, analytical methods 
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for determining the effects of rsc structure on information content can be complicated 

to calculate for large stimulus sets, and can also be inaccurate unless applied to 

data consisting of hundreds of trials per stimulus (Moreno-Bote et al., 2014; 

Kanitscheider et al., 2015). Linear decoders are demonstrably well-suited for 

extracting low-dimensional representations from high-dimensional neuronal 

ensemble data and for directly assessing the impact of rsc structure on ensemble 

information content, and thus offer a pragmatic solution to the issues of 

dimensionality and correlated variability (Rigotti et al., 2013; Moreno-Bote et al., 

2014). 

Previous studies have decoded the identity of stimuli maintained in spatial 

(Markowitz et al., 2011; Meyers et al., 2012) and non-spatial WM (Meyers et al., 

2012; Mendoza-Halliday et al., 2014) in pseudopopulations of LPFC neurons, 

typically using sets of 2-8 unique stimuli. We were able to reliably decode which of 

16 target locations was being held in WM during the delay epoch by applying a 

linear support vector machine (SVM-Materials and Methods) to simultaneously-

recorded ensemble data (Supplementary Figure 4.1a; max = 77%; mean across 

sessions = 52%).  
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 Examining ensembles consisting of every simultaneously-recorded neuron 

and/or only tuned neurons is a standard practice in neurophysiology. However, this 

practice assumes that all of the examined neurons contribute to coding, an 

assumption difficult to verify. It is possible that a subset of the recorded neurons can 

represent nearly as much information as the entire ensemble, and that such a 

subset could form a “unit” of information coding that is read out by a downstream 

mechanism. Furthermore, the information-modifying effects of the rsc structure 

have been proposed to increase with ensemble size, but most of our knowledge 

about these scaling effects is drawn from extrapolations of pairwise recordings, 

which do not necessarily predict ensemble-level effects (Zohary et al., 1994; 

Averbeck et al., 2006; Averbeck and Lee, 2006; Shamir and Sompolinsky, 2006; 

Cohen and Kohn, 2011; Moreno-Bote et al., 2014). Thus, examining how information 

coding varies across different subsets or sub-ensembles of simultaneously-recorded 

neurons—what we refer to as the ensemble “configuration space”—could reveal 

insights overlooked by the constraint of analyzing only a single, fixed ensemble of all 

tuned neurons recorded during an experiment. 

In order to determine how WM coding scales across ensemble configurations, 

we devised “ensemble construction” procedures. The procedures consisted of 
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iteratively constructing neuronal ensembles by drawing units from the pool of all 

simultaneously-recorded neurons, and quantifying the WM information using the 

decoder (Figure 4.3). We implemented two procedure variants. We refer to the first 

variant as the “best individual unit” method. This method examines the assumption 

that a neuronal ensemble is simply a collection of the best individually tuned 

neurons; accordingly, the method is agnostic to between-neuron information such as 

the ensemble rsc and rsignal structures. It was implemented as follows (Figure 4.3a): 

We began by using the decoder to assess the WM information content of each 

individual unit in a single recording session. We then rank ordered the units based 

on their information content. An ensemble of two neurons was constructed using the 

two most informative neurons, and the decoding analysis performed on the 

ensemble of two neurons. This process was repeated iteratively, performing the 

decoding analysis using the n most informative neurons in the session, until the 

ensemble consisted of all the neurons recorded in the session. The results from 

applying the “best individual unit” method to an example session are depicted in 

Figure 4.3c (teal). 
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Figure 4.3: Accounting for between-neuron phenomena increases ensemble 
efficiency. Visualization of the (a) “best individual unit” ensemble construction 
procedure and (b) “optimized” ensemble construction procedure. Each circle 
represents a unit, and the shading represents that unit’s information content, as 
assessed using the decoder. (c) Decoding results for the best individual unit (teal) 
and optimized procedures (violet), applied to a single example session. The 
continuous line plot with circular markers shows the ensemble decoding accuracy 
(y-axis) as a function of size (x-axis). The square markers at the bottom of the plot 
denote the decoding accuracy (y-axis) of the individual unit added to the ensemble 
at a given size (x-axis). Both methods yield identical results for ensembles of the 
maximum size because these ensembles are identical; they consist of every 
simultaneously recorded unit in the session (i.e. the full ensemble). (d) Coding 
efficiency of the optimized method relative to the best individual unit method (y-
axis) as a function of ensemble size (x-axis). Coding efficiency is quantified as 
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((accuracyoptimized/accuracybest individual unit)-1)×100. Colored lines are values for individual 
sessions. The thick black line is the across-session mean, and the gray shaded area 
is the S.E.M. The gray line running along the bottom indicates ensemble sizes for 
which the optimized method is significantly more efficient than the best individual 
unit method (P < 0.05, paired t-test, Hochberg-corrected). 

The second variant of our ensemble construction procedure, which we refer to 

as the “optimized” method (Figure 4.3b; also referred to as “greedy forward 

selection” in the machine learning literature (Guyon and Elisseeff, 2003)), was 

designed to optimize WM information for a given ensemble size, accounting for the 

rsc and rsignal structures that were ignored in the best individual unit method. The 

optimized method also began by rank ordering the information content of individual 

neurons within a given recording session using the decoder. However instead of 

starting with the two most informative individual neurons, as in the “best 

individual unit” method, we instead constructed all possible neuron pairs that 

contained the most informative unit. We then identified the most informative of 

these pairs, as assessed using the decoder. The most informative pair was then 

combined with each remaining neuron to generate a set of trios, from which the 

most informative trio was identified and used as the basis for of the most 

informative quartet, and so on until the ensemble consisted of all the neurons 

recorded in the session. Figure 4.3c shows the results of applying the optimized 
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method to an example session. Unlike the best individual unit method, the 

optimized method does not consider the information content of an individual unit in 

isolation, but instead how the neuron contributes to the information content of the 

ensemble to which it belongs.  

The results of the two ensemble building methods are directly compared in 

Figure 4.3c & d. Notice that the optimized method yields more informative 

ensembles of a given size than the best individual unit method. We refer to this 

property—differing WM information content in ensembles of identical size—as 

coding efficiency; the optimized ensembles are more efficient than the best 

individual unit ensembles. Note that coding efficiency can also refer to the converse 

idea—identical WM information in ensembles of different size. We quantified coding 

efficiency as the percent change in decoding accuracy of the optimized method 

relative to the best individual unit method (similar to Δshuffle—Materials and 

Methods—Figure 4.3d). The optimized method becomes significantly more efficient 

than the best individual unit method starting at ensemble size n = 3 (P < 0.05, 

paired t-test, Hochberg-corrected). For certain sessions and ensemble sizes the 

relative efficiency can exceed 30%. Furthermore, the decoding performance 

approaches saturation more quickly in the optimized ensembles (Supplementary 
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Figure 4.2). Achieving 95% of maximum decoding accuracy using the optimized 

method requires only ~25% of the units recorded in a given session (~11 units), 

whereas the best individual unit method requires ~33% of the units (~14 units). In 

“random” ensembles—ensembles generated by randomly subsampling n units from 

a given recording session—approximately 85% of the units are necessary to reach 

95% of maximum decoding accuracy. These results demonstrate that neuronal 

ensembles in the LPFC encode more information than single neurons, the most 

informative ensembles are not necessarily composed of the most informative 

individual units, and that a relatively small subset of neurons can represent nearly 

as much WM information as the full recorded population. 

4.3.3 Effects of rsc and rsignal structures on WM coding efficiency 

In order to dissociate the effects of the rsc and rsignal structures on WM coding 

efficiency in the optimized ensembles, we constructed new ensembles using the 

optimized procedure on firing rate data from which the rsc structure had been 

removed via shuffling; the classifier was trained and tested on shuffled data for 

each ensemble size. We then compared the information content of these “rsignal-only” 

ensembles to the information content of ensembles generated using the original, rsc 

structure-intact data, which we now refer to as the “rsignal + rsc“ ensembles. The 



Chapter 4. Correlated Variability Modifies PFC Working Memory Fidelity 

 169 

results for all three methods (best individual unit, rsignal + rsc optimized, and rsignal-

only optimized) applied to an example session are compared in Figure 4.4a. The 

rsignal-only ensembles contain significantly more WM information than the best 

individual unit ensembles across sizes ranging from 2-47 neurons (P < 0.05, paired 

t-test, Hochberg-corrected; Figure 4.4b). However, the effect of the rsc structure is 

variable: the rsignal + rsc ensembles are more efficient than the rsignal-only ensembles at 

smaller ensemble sizes, while this effect inverts at larger ensemble sizes (P < 0.05 

for ensemble sizes of 11-15 and 43-45 neurons, paired t-test, Hochberg-corrected; 

Figure 4.4b-c). These changes in WM coding efficiency effected by the rsc structure 

can reach ±15% across different recording sessions and ensemble sizes (Figure 

4.4c), enough to double (or nullify) efficiency increases afforded by the rsignal 

structure alone. These results indicate that the rsc structure significantly impacts 

WM coding, and can do so in a manner that varies non-monotonically with ensemble 

size. These results cannot be ascribed to idiosyncrasies of the SVM decoder, as 

repeating the same analyses using logistic regression yields similar results 

(Supplementary Figure 4.3). We also found a similar–though less consistent–effect 

during stimulus presentation, with considerably greater session-to-session 

variability (Supplementary Figure 4.4). 
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Figure 4.4: Effects of rsc structure on ensemble coding efficiency and composition. (a) 
Decoding accuracy (y-axis) as a function of ensemble size (x-axis) for the best 
individual unit (teal), rsignal + rsc (violet), and rsignal-only (blue) methods for the same 
example session as in Figure 4.3c. Note that for the rsignal-only ensembles, the 
classifier was trained and tested on rsc-shuffled data, whereas for the rsignal + rsc and 
best individual unit ensembles, the classifier was trained and tested on rsc-intact 
data. (b) Coding efficiency of rsignal + rsc ensembles and rsignal-only ensembles, relative 
to the best individual unit ensembles (y-axis), as a function of ensemble size (x-
axis). The violet line running along the bottom indicates ensemble sizes for which 
the rsignal + rsc ensembles are significantly more efficient than the best individual unit 
ensembles (P < 0.05, paired t-test, Hochberg-corrected); the blue line is similar, but 
for rsignal-only ensembles vs. best individual unit ensembles. Note that the coding 
efficiency of rsignal + rsc ensembles relative to best individual unit ensembles was 
previously shown in Figure 4.3d. (c) Coding efficiency of rsignal-only ensembles 
relative to rsignal + rsc ensembles; similar to Figure 4.3d. A positive value indicates 
that shuffling out the rsc structure improves decoding. The striped blue and violet 
lines running along the bottom indicates ensemble sizes for which the efficiency of 
rsignal + rsc ensembles and rsignal-only ensembles are significantly different (P < 0.05, 
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paired t-test, Hochberg-corrected). (d) Decoding performance of rsc–shuffled vs. rsc–
intact ensembles (∆shuffle, y-axis) as a function of ensembles size (x-axis) for random 
ensembles. Ensembles were generated by randomly subsampling n units from the 
full recorded population in a given session. The gray lines running along the bottom 
indicate ensemble sizes for which the rsc–shuffled vs. rsc–intact ensembles are 
significantly different (P < 0.05, paired t-test, Hochberg-corrected). (e) Similarity 
between rsignal + rsc ensembles and rsignal-only ensembles (y-axis) as a function of 
ensemble size (x-axis). Ensemble similarity is quantified as the proportion of units 
common to the two ensembles for a given size. Note that ensemble similarity is 1 for 
ensembles of size n = 1, and for the largest ensemble size in a given session, because 
both ensemble-building procedures begin with the same unit, and the largest 
ensemble in each session consists of every simultaneously-recorded unit in that 
session. The gray line running along the bottom indicates ensemble sizes for which 
the similarity of the rsignal + rsc ensembles and rsignal-only ensembles is significantly 
less than 1 (P < 0.05, z-test of proportion, Hochberg-corrected). 

It is possible that the observed effects of the rsc structure on WM coding are 

simply a property of an ensemble’s size, regardless of whether the ensemble is 

optimized for WM representation. In order to resolve this ambiguity, we compared 

the decoding performance of the random ensembles in which rsc structure was intact 

vs. shuffled (Figure 4.4d). We found that shuffling out the rsc structure significantly 

improved decoding in most ensembles of 6 or more units (P < 0.05, paired t-test, 

Hochberg-corrected), and that the magnitude of the decoding improvement was 

robustly and significantly correlated with the size of the ensemble in 8 out of 12 

recording sessions (Spearman’s ρ ≥ .53; P < 0.001; Supplementary Figure 4.5a). 

While the rsc structure appears to consistently impair decoding at the largest 
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ensemble sizes (Supplementary Figure 4.5b), these results demonstrate that WM 

coding in a neuronal ensemble consisting of randomly selected neurons will be 

impaired by the rsc structure in a manner proportional to the size of the ensemble, 

but that the rsc structure can actually improve WM coding in rsc + rsignal optimized 

ensembles. 

4.3.4 Different ensemble configurations optimize WM coding when the rsc structure 

is intact vs. removed 

The previous results demonstrate that accounting for an ensemble’s rsc structure 

can significantly alter estimates of its WM information content. A complementary 

question is whether accounting for the rsc structure also alters estimates of 

individual neurons’ contributions to an ensemble’s WM coding. Are ensembles that 

maximize coding efficiency when the rsc structure is intact composed of the same 

neurons that maximize coding efficiency when the rsc structure is shuffled out? In 

order to answer this question, we examined the proportion of units common to both 

the rsignal + rsc and rsignal-only ensembles for each ensemble size (Figure 4.4e). The 

proportion is significantly less than 1 for ensemble sizes of 2 to 50 neurons (P < 

0.05, z-test of proportions, Hochberg-corrected), indicating that the ensembles 

generated by the two methods are not identical; the similarity within an individual 
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session can be as low as 33%. The rsignal + rsc and rsignal-only procedures also recruited 

units into ensembles in different sequences (Spearman’s ρ < 1 in all sessions, mean 

ρ = 0.713; P < 0.05, Bonferroni-corrected; Supplementary Figure 4.6). These results 

demonstrate that different subpopulations of neurons optimize WM coding when the 

intrinsic rsc structure is present vs. when it is absent, though some neurons strongly 

contribute to WM coding regardless of an ensemble’s rsc structure. 

4.3.5 Ensembles optimized for WM representation are rsignal diverse and 

anatomically dispersed 

One of our earlier analyses demonstrated that near-maximum decoding 

performance can be achieved with a relatively small proportion of recorded units, 

and that accounting for an ensemble’s rsignal and/or rsc structure can further enhance 

WM coding. If the WM coding is optimized in these ensembles by maximizing their 

representation of the stimulus space, their rsignal distributions should be broader 

than those of the full recorded ensembles. We tested this by examining the rsignal + rsc 

and rsignal-only ensembles that achieved ≥95% of maximum decoding performance in 

each session (which we refer to as “near-max” ensembles). Indeed, we found that the 

rsignal distributions of the near-max rsignal + rsc ensembles, rsignal-only ensembles, and 

full ensembles were all significantly different from each other (Figure 4.5a; P << 
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0.001 for all comparisons, χ2-test, Bonferroni-corrected). The width of the rsignal

distribution, measured as the mean absolute deviation (Materials and Methods), 

was larger for the near-max rsignal + rsc and rsignal-only ensembles than for all units 

(Figure 4.5b; P << 0.001 for both, F-test, Bonferroni-corrected), and larger in the 

rsignal-only than the rsignal + rsc ensembles (P = 0.01, F-test). 

 

Figure 4.5: Ensembles optimized for WM representation are rsignal diverse and 
anatomically dispersed. (a) rsignal distributions for the full ensembles (grey; n = 
12,222 units), near-max rsignal + rsc ensembles (violet; n = 2,414), and near-max rsignal-
only ensembles (blue; n = 2,724), pooled across all sessions. All three distributions 
are significantly different from each other (P << 0.001, χ2-test, Bonferroni-corrected; 
computed using non-overlapping bins of size = 0.1). (b) Mean |rsignal deviation| in 
the full (grey), near-max rsignal + rsc (violet), and near-max rsignal-only ensembles 
(blue). rsignal deviation is defined as the difference between a unit pair’s rsignal and the 
mean rsignal of the ensemble to which the unit pair belongs. **P << 0.001, Bonferroni-
corrected, *P = 0.01, F-test—Online Methods. Shaded regions represent Bonferroni-
corrected 95% comparison intervals between group means—Online Methods. (c) 
Mean interunit distance in each of the three ensemble groups. *P < 0.005, F-test, 
Bonferroni-corrected. Shaded regions represent Bonferroni-corrected 95% 
comparison intervals between group means. (d) Correlation between interunit 
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distance and rsignal in the three ensemble groups. *P < 0.005, bootstrap test. Shaded 
regions represent bootstrapped 95% confidence intervals. (e) Mean interunit 
distance (y-axis) as a function of rsignal in each of the ensemble groups, computed 
using non-overlapping rsignal bins of size 0.1. Shaded region denotes S.E.M. 

Prior studies have reported weak topography for visual (Suzuki and Azuma, 

1983; Leavitt et al., 2013) and mnemonic (Constantinidis et al., 2001a) space in 

LPFC; units’ tuning similarity and the anatomical distance between them—the 

“interunit distance”—are negatively correlated. If the optimized ensembles reflect 

this topography, their broader representation of the stimulus space means they 

should encompass larger regions of cortex relative to the full recorded ensembles. 

Indeed, we found that the mean distance between units—or interunit distance—was 

larger in the near-max rsignal + rsc and rsignal-only ensembles than the full ensembles 

(Figure 4.5c P < 0.005 for both, F-test, Bonferroni-corrected—Materials and 

Methods). We also found that topography in the optimized ensembles was enhanced 

compared to the full ensembles (Figure 4.5d); the correlation between interunit 

distance and rsignal was significantly stronger in the near-max rsignal + rsc ensembles (r 

= -0.33) and rsignal-only ensembles (r = -0.38) compared to the full ensembles (r = -

0.26; P < 0.005 for both, bootstrap test). A potential explanation for this difference is 

that the distance between units with negative rsignal is larger in the optimized 
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ensembles (Figure 4.5e). Remarkably, the mean interunit distance can reach 2.5mm 

in the near-max ensembles. Considering that cortical columns in LPFC could span 

~0.7 millimeters (Bugbee and Goldman-Rakic, 1983), this result suggests that 

optimal ensembles extend across several cortical columns. These results link the 

spatial mnemonic topography of LPFC to principles of WM coding. They also 

demonstrate the utility of accounting for neuronal information content when 

examining cortical organization, compared to approaches that focus on neuronal 

tuning characteristics while leaving their effects on information implicit. These 

findings are also robust to the choice of “near-max” value, as repeating the analyses 

with different thresholds yielded similar results (Supplementary Figure 4.7). 

4.3.6 Non-selective units can improve WM coding by modifying the rsc structure 

Given our observation that the rsc structure can significantly affect the information 

content of a neuronal ensemble during WM, it is possible that neurons that do not 

contain task-related information in isolation could still influence the information 

content of an ensemble by modifying the rsc structure (Figure 4.6a). The rsignal 

distribution of the rsignal + rsc ensembles in Figure 4.6a contains a peak near rsignal = 0, 

unlike the rsignal-only ensembles, suggesting that units with orthogonal and/or weak 

selectivity may contribute more to WM coding when the rsc structure is intact. 
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Indeed, non-selective units were sometimes added to ensembles before selective 

units, and before decoding performance saturated (Figure 4.6b). In order to test 

whether these units were increasing ensemble WM information by modifying the rsc 

structure, we identified all the non delay-selective units (P ≥ 0.05, one-way Kruskal-

Wallis ANOVA with stimulus location as the factor) that were added prior to 

decoding performance saturation in the rsignal + rsc ensembles (Figure 4.6b; 16 units 

in total). We then compared the amount of information these units contributed to an 

ensemble before and after shuffling out the rsc structure (Figure 4.6c—see Materials 

and Methods). Removing the rsc structure significantly decreased the amount of WM 

information contributed by these units (P < 0.01, signed rank test, paired), and the 

amount of WM information contributed after shuffling was not significantly 

different from zero (P = 0.43, Wilcoxon signed rank test, unpaired; additional 

descriptive statistics and control analyses for these units are provided in 

Supplementary Figure 4.8). We also found 15 non-selective, noise-shaping neurons 

during the stimulus epoch. Only one of the non-selective, noise-shaping neurons 

was common to both epochs. However, the decoding improvement contributed by 

these neurons, both before and after removing the rsc structure, was more consistent 

during the delay than the stimulus epoch (Supplementary Figure 4.9). These results 
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demonstrate the existence of non-selective “noise-shaping” neurons: neurons that do 

not contain task-related information in isolation, but increase the information 

content of an ensemble entirely through modifying the rsc structure. 

 

Figure 4.6: Non-selective neurons can increase ensemble information by modifying 
the rsc structure. (a) Two-neuron conceptual diagram of how a non-selective neuron 
could increase ensemble information content. In the first scenario (left), one neuron 
differentiates between two stimuli (i.e. is selective; stimuli are denoted by blue and 
pink) and the other neuron does not (i.e. is not selective). The response variability of 
the two neurons is not correlated (i.e. rsc  = 0). In the second scenario (right), the 
individual neurons’ properties are identical, yet correlated response variability (i.e. 
the rsc structure) improves discrimination between the two stimuli relative to the 
uncorrelated scenario. (b) The continuous line plots with circular markers show the 
ensemble decoding accuracy (y-axis) as a function of size (x-axis) for the rsc + rsignal 
optimized method for a single example ensemble, prior to decoding saturation, for 
rsc-intact data (magenta) and rsc-shuffled data (pale magenta). The square markers 
at the bottom of the plot denote the decoding accuracy (y-axis) of the individual unit 
added to the ensemble at a given size (x-axis). Notice units that are added to the 
population that are not selective (gray). (c) Change in decoding accuracy from 
adding non-selective units to pre-saturation ensembles (y-axis) when the rsc 
structure is intact (left) and removed (right). Each line is the change for an 
individual unit. The bolded line is the median. Removing the rsc structure 
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eliminates the information gain contributed by these units. *P = 0.001, signed-rank 
test; **P < 0.003, paired signed-rank test; ns (not significant), P = 0.43, signed-rank 
test; n = 16. 

4.4 Discussion 

By using microelectrode arrays to record from ensembles of LPFC neurons, we were 

able to elucidate the effects of the rsc structure on WM coding, and more generally, 

how WM is represented in neuronal ensembles. We found that the relationship 

between rsc and rsignal during WM maintenance was as predicted by connection 

topography in which similarly-tuned neurons are recurrently excitatory and 

dissimilarly-tuned neurons are mutually inhibitory. Using a linear decoder, we 

found that removing the rsc structure could increase or decrease the information 

content of neuronal ensemble, depending on the size and composition of the 

ensemble. Consistent with previous findings, WM fidelity in ensembles of randomly-

selected neurons was impaired by the rsc structure, and the magnitude of the 

impairment was proportional to the size of the ensemble. However, the intrinsic rsc 

structure improved WM coding in smaller neuronal ensembles of neurons optimized 

for WM representation (rsignal + rsc ensembles). The rsignal + rsc ensembles consisted of 

different neurons than ensembles optimized for WM representation in the absence 

of the rsc structure (rsignal-only ensembles). The rsignal + rsc ensembles had a broader 
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rsignal distribution, were more anatomically dispersed, and exhibited stronger 

topography than the full population of recorded LPFC units. Finally, we found that 

individual units that did not encode WM in isolation (“non-selective” neurons), could 

still contribute to WM coding when part of an ensemble by altering the ensemble’s 

rsc structure.  

4.4.1 Recurrent network dynamics during WM coding 

WM representations in LPFC are hypothesized to be maintained by a network 

structure of recurrent excitation and lateral inhibition (Amit and Brunel, 1997; 

Camperi and Wang, 1998; Compte et al., 2000; Durstewitz et al., 2000; Wang, 2001; 

Constantinidis and Wang, 2004; Wimmer et al., 2014). The resulting dynamics 

should manifest as changes in rsc during WM maintenance (delay epoch) relative to 

other epochs. We observed this phenomenon in our data—mean rsc is lower during 

the stimulus epoch compared to the delay epoch. A previous experiment 

(Constantinidis and Goldman-Rakic, 2002) reported this trend, but did not find a 

significant effect, perhaps due to a smaller sample size (295 pairs, compared to our 

10,535 pairs). A second prediction is that WM maintenance should modify rsc as a 

function of rsignal; rsc should be lower between neurons with dissimilar tuning than 

neurons with similar tuning (Constantinidis et al., 2001a; Constantinidis and 
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Goldman-Rakic, 2002; Qi and Constantinidis, 2012; Katsuki et al., 2014; Wimmer et 

al., 2014; Markowitz et al., 2015). Indeed, we found that the relationship between rsc 

and rsignal changed as predicted during the delay compared to the fixation and 

stimulus epochs (Figure 4.2b). Our findings indicate that WM maintenance 

modulates the rsc structure of LPFC neuronal ensembles in a manner consistent 

with recurrent excitation and lateral inhibition.  

4.4.2 Decoding WM representations from LPFC neuronal ensembles 

A prior study showed that using a pseudopopulation (asynchronously-recorded 

neurons) of the 8 most informative LPFC neurons to decode spatial WM information 

during a match/non-match WM task yielded nearly identical results as using the 

entire 600–neuron pseudopopulation (Meyers et al., 2012). We also showed that a 

small subensemble of the most informative neurons contain nearly as much WM 

information as the full recorded population. Importantly, we demonstrated that 

accounting for the rsc structure increases ensemble efficiency, thus pseudopulation 

analyses likely overestimate the number of neurons required to achieve a given 

decoding accuracy.  

A second study (Markowitz et al., 2011) using simultaneous recordings from 

32 electrodes was also able to decode which of 8 locations was being remembered 
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during a spatial WM task. However, their study was primarily concerned with how 

cortical depth affected the ability to decode a remembered location from local field 

potentials (LFPs), and contained minimal analysis of spiking activity or the impact 

of neuronal ensemble composition on WM coding. 

4.4.3 Effects of rsc and rsignal structures on WM coding 

The observed patterns of rsc and rsignal are thought to be indicative of a network 

structure that stabilizes WM representations over time (Laing et al., 2002; Polk et 

al., 2012; Wimmer et al., 2014). Our results demonstrate that these correlations can 

also affect the readout of WM representations from neuronal ensembles: If WM 

representations are read out from optimized ensembles, then the network 

correlation structure will favor WM coding; however, if WM representations are read 

out from ensembles that are “suboptimal”, then the correlation structure could 

impair WM coding. Our experiment shows that these changes in ensemble 

information content can reach 20%. Thus a mechanism that is thought to 

temporally stabilize WM representations can also affect the ability to read out these 

representations.  
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4.4.4 Effects of the rsc structure on information in non-WM tasks 

Reports of the effects of ensemble rsc structure on information content vary 

significantly in sign and magnitude (Zohary et al., 1994; Abbott and Dayan, 1999; 

Averbeck et al., 2006; Shamir and Sompolinsky, 2006; Graf et al., 2011; Tremblay et 

al., 2014; Graf and Andersen, 2015); our results can help reconcile these disparate 

accounts. For example, previous studies that applied decoding techniques to 

simultaneously-recorded ensembles found that removing the rsc structure decreased 

decoding accuracy for grating orientation (Graf et al., 2011) and remembered 

location (Graf and Andersen, 2015), while another study reported a positive effect of 

pairwise rsc on information coding32. Moreover, spatial attention increases signal-to-

noise primarily by reducing rsc (Cohen and Maunsell, 2009; Mitchell et al., 2009; 

Tremblay et al., 2014). We found that the effect of rsc structure on ensemble 

information varied dramatically depending on an ensemble’s size and composition; 

removing the rsc structure from the full recorded ensembles increased decoding 

accuracy, but removing the rsc structure from the most informative sub-ensembles 

decreased decoding accuracy. The discrepancies across previous studies may arise 

from the location in “configuration space” of the neuronal ensembles under 

investigation (Hu et al., 2014). Importantly, they should caution us against making 
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broad conclusions concerning how variables such as rsc shape information 

transmission across brain areas. In order to fully clarify this issue one must identify 

which neurons are contributing to coding, which poses a significant technical 

challenge. 

Our ensemble construction procedures were designed in part to sidestep the 

challenge of identifying which neurons contribute to coding, and allow us to 

characterize the system at specific states of interest. One may argue that we did not 

examine the full ensemble configuration space. Such an undertaking would be 

computationally infeasible; there are approximately 1015 unique ensembles that 

could be created from 50 neurons. Thus, our results may actually underestimate the 

true range of effect sizes. Nevertheless, even a limited search of the full 

configuration space demonstrates the importance of the rsc structure to WM coding 

in LPFC neuronal ensembles. 

4.4.5 Generalization to larger ensembles 

We demonstrated that decoding performance of an ensemble can be improved by 

adding neurons that are not the most informative in isolation. However, this effect 

seems to be maximized at ensemble sizes of approximately 3-30 neurons (e.g. Figure 

4.3d). The origin of this effect seems to be that it benefits decoding to maximize the 
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width of an ensemble’s rsignal distribution (e.g. Figure 4.5); if there is a stimulus that 

few neurons in an ensemble are selective for, it can be more beneficial to add a 

neuron that is weakly selective for the underrepresented stimulus than to add a 

neuron that is strongly selective for a stimulus that is already well-represented by 

the ensemble. The question remains whether this is simply an artifact of the sample 

size available for analysis, and whether the effect would extend to larger ensemble 

sizes. Given that this effect arises from the selectivity statistics of the population of 

recorded neurons, we expect it to scale to larger ensembles so long as the statistics 

of the population remain similar, with the following caveats: First, this effect will 

depend on the size of the stimulus space (i.e. the number of unique stimuli that 

need to be decoded). As the size of the stimulus space increases, so does the need to 

represent it. In the extreme example of two stimuli to decode, this effect should not 

exist. Second, as ensemble decoding approaches saturation (i.e. 100%), the decoding 

improvement from adding neurons to the ensemble will become negligible, 

rendering arbitrary the choice of which neuron is “optimal” to add to the ensemble. 

A generalized solution for determining the ensemble size at which decoding 

saturates is beyond the scope of this study, however it depends on many variables, 
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including the size of the stimulus space, the selectivity statistics of the neurons in 

the ensemble, and the number of trials in the data set. 

4.4.6 Effects of spike sorting 

As in prior similar studies of the effects of rsc on neuronal information coding, we 

included both single- and multiunits for analysis (Cohen and Maunsell, 2009; Cohen 

and Kohn, 2011; Ruff and Cohen, 2014; Tremblay et al., 2014). This provides the 

dual advantages of greater statistical power, and a larger range of ensemble sizes 

across which to examine the effects of the rsc structure. One caveat of this approach 

is that measurements of rsc are known to be smaller for single units than for multi-

unit clusters, which constitute the majority of our data set. However, our observed 

mean rsc values are similar to reports in prior studies of WM in LPFC that 

exclusively examined single units, in which mean rsc ranged from approximately 

0.02-0.06, depending on the task epoch (Constantinidis and Goldman-Rakic, 2002; 

Qi and Constantinidis, 2012). Our observed rsc values are also similar to two prior 

studies conducted in our laboratory that used identical subjects, microelectrode 

arrays, and microelectrode array implantation sites as the present study (Leavitt et 

al., 2013; Tremblay et al., 2014). One of these studies (Tremblay et al., 2014) found 

that the effects of rsc on decoding spatial attentional information were robust to 
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changes in spike sorting; the rsc structure impaired SVM decoding of attended 

location whether or not the activity on an electrode was sorted into separate single- 

and multiunit clusters, or remained a unitary channel of threshold crossings. 

Because we replicated previous findings, and observed ranges of values rsc in 

accordance with similar previous studies, we doubt that our results can be ascribed 

entirely to the inclusion of multiunit clusters in our data set. 

4.4.7 Noise shaping units 

Neurophysiological studies typically assume that if an ensemble codes for some 

behavior, the individual neurons constituting that ensemble will also code for that 

behavior when examined in isolation. This assumption is implicit in the method that 

forms the bedrock of neurophysiological research: serial recording of individual 

neurons. However, this approach cannot account for simultaneity between neurons. 

The use of large-scale simultaneous ensemble recordings allowed us to find non-

selective “noise-shaping” neurons: neurons that are not selective for a remembered 

location, but can improve the fidelity of WM representation in an ensemble by 

modifying the ensemble’s rsc structure (Figure 4.6a). A similar phenomenon was 

shown in a prior fMRI study; voxels that do not contain stimulus information in 

isolation can improve decoding when part of an “ensemble” of voxels (Yamashita et 
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al., 2008). Their study and ours appear to report two different instances of the same 

general property of information coding in multidimensional systems: features (e.g. 

voxels or neurons) that do not contain information in isolation can still modify the 

amount of information in a system to which they belong by changing the structure 

of correlated variability. It remains to be observed whether non-selective noise-

shaping neurons contribute to information coding in other tasks and brain regions.  

4.5 Conclusion 

We leveraged the simultaneous multi-neuron recording capabilities of 

microelectrode arrays to elucidate how WM is coded in LPFC neuronal ensembles. 

We found that the structure of the correlated variability (rsc) supports current 

computational models of how sustained activity emerges in WM networks. A great 

deal of the power of modeling studies lies in their ability to explore parameter 

spaces, and we we devised our ensemble construction procedures in an attempt to 

create an empirical analog of this capability. Applying these procedures revealed 

that the size, rsignal structure, and rsc structure of an ensemble can profoundly impact 

WM coding. We also found that LPFC neuronal ensembles that optimize the coding 

of remembered locations are heterogeneously tuned and anatomically dispersed. 

Finally, we demonstrated that a ubiquitous assumption in neurophysiological 
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studies—only “selective” neurons contribute to information coding—is not justified 

in LPFC networks; non-selective neurons can contribute to information coding by 

shaping the rsc structure. More generally, our results emphasize the relevance of 

ensemble-level phenomena in building a comprehensive understanding of brain 

networks.  

4.6 Materials and methods 

4.6.1 Ethics Statement 

The animal care and ethics are identical to those in (Leavitt et al., 2013), and were 

in agreement with Canadian rules and regulations and were pre-approved by the 

McGill University Animal Care Committee. Animals were pair-housed in enclosures 

according to Canadian Council for Animal Care guidelines. Interactive 

environmental stimuli were provided for enrichment. During experimental days, 

water was restricted to a minimum of 35ml/kg/day, which they could earn through 

successful performance of the task. Water intake was supplemented to reach this 

quantity if it was not achieved during the task and water restriction was lifted 

during non-experimental days. The animals were also provided fresh fruits and 

vegetables daily. Body weight, water intake, as well as mental and physical hygiene 

were monitored daily. Blood cell count, hematocrit, hemoglobin, and kidney function 
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were tested quarterly. If animals exhibited discomfort or illness, the experiment 

was stopped and resumed only after successful treatment and recovery. All surgical 

procedures were performed under general anesthesia. None of the animals were 

sacrificed for the purpose of this experiment. 

4.6.2 Task 

Trials were separated into four epochs: fixation, stimulus presentation (stimulus), 

delay, and response (Figure 4.1a). The animal initiated a trial by maintaining gaze 

on a central fixation spot (0.08 degrees2) and pressing a lever; the subject needed to 

maintain fixation within 1.4˚ of the spot until cued to respond. The fixation period 

lasted either 483, 636, or 789ms, determined randomly at the beginning of each 

trial. After fixation, a sine-wave grating (2.5 Hz/deg, 1° diameter, vertical 

orientation) appeared at one of 16 randomly selected locations for 505ms. The 

potential stimulus locations were arranged in a 4x4 grid, spaced 4.7° apart, 

centered around the fixation point. The stimulus period was followed by a randomly 

variable delay period of 496-1500ms. The delay period ended and the response 

period commenced when the fixation point was extinguished, cuing the animal to 

make a saccade to the location of the previously presented stimulus and then to 

release the lever. The animal had 650ms to respond. Successful completion of the 
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trial yielded a juice reward. The minimum duration between trials was 300ms. 

Fixation breaks during the trial or failure to saccade to the target in the allotted 

time resulted in immediate trial abortion without reward and a delay of 3.5 seconds 

before the next trial could be initiated.  

4.6.3 Experimental Setup  

The experimental setup is identical to (Leavitt et al., 2013; Tremblay et al., 2014). 

The stimuli were back-projected onto a screen located 1 meter from the subjects’ 

eyes using a DLP video projector (NEC WT610, 1024x768 pixel resolution, 85 Hz 

refresh rate). Subjects performed the experiment in an isolated room with no 

illumination other than the projector. Eye positions were monitored using an 

infrared optical eye-tracker (EyeLink 1000, SR Research, Ontario, Canada). A 

custom computer program controlled stimulus presentation and reward 

dispensation, and recorded eye position signals and behavioral responses. Subjects 

performed the experiment while seated in a standard primate chair, and were 

delivered reward via a tube attached to the chair and an electronic reward 

dispenser (Crist Instruments, TX, USA) that interfaced with the computer. Prior to 

the experiments, subjects were implanted with head posts. The head post(s) 
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interfaced with a head holder to fix the monkeys’ heads to the chair during 

experiment sessions. 

4.6.4 Microelectrode Array (MEA) Implant 

As in (Leavitt et al., 2013; Tremblay et al., 2014) we chronically implanted a 10x10, 

1.5mm microelectrode array (Blackrock Microsystems LLC, Utah, USA; (Maynard 

et al., 1997; Normann et al., 1999)) in each monkey’s left LPFC—anterior to the 

knee of the arcuate sulcus and caudal to the posterior end of the principal sulcus 

(area 8a) (Figure 4.1a). Detailed surgical procedures can be found in (Leavitt et al., 

2013). 

4.6.5 Recordings and Spike Detection 

Data were recorded using a ‘Cerebus Neuronal Signal Processor’ (Blackrock 

Microsystems LLC, Utah, USA) via a Cereport adapter. Spike waveforms were 

detected online by thresholding. The extracted spikes (48 samples at 30 kHz) were 

re-sorted manually in ‘OfflineSorter’ (Plexon Inc, TX). The electrodes on each MEA 

were separated by at least 0.4 mm and were organized into three blocks of 32 

electrodes. We collected data from one block during each recording session. Detailed 

recording procedures can be found in (Leavitt et al., 2013). We collected spike data 

across 12 recording sessions (7 in JL, 5 in F), yielding a total of 545 units: 164 single 
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neurons (99 in JL, 65 in F), and 381 multiunits (221 in JL, 160 in F). Multiunits 

were defined as threshold-crossing events with action potential-like morphology 

that were not similar enough to be included with any of the well-defined single 

units. Units with mean firing rates of less than 0.5 Hz during the stimulus or delay 

epoch and units that fired in fewer than 5% of trials were excluded from analysis. 

4.6.6 Analysis Epochs 

We analyzed the final 483ms of the fixation epoch, the initial 496ms of the stimulus 

epoch, and the initial 496ms of the delay epoch. These durations were selected to 

make the analysis epochs as similar as possible, given the constraints that the 

stimulus presentation software operated at a resolution of 85 Hz, and to include as 

many trials as possible. We only analyzed successfully completed trials. Data 

analysis was performed using MATLAB. 

4.6.7 Spatial Selectivity 

In order to determine whether a unit was selective for the stimulus location during 

a given epoch, we computed a one-way Kruskal-Wallis ANOVA on epoch-averaged 

firing rates with stimulus location as the independent variable. A unit was defined 

as selective if the test resulted in P < 0.05. The number of trials per location varied 

across recording sessions (mean = 21.5, minimum = 8, maximum = 36). Thus the 
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total number of trials across all locations (n trials x 16 locations) ranged from 128 to 

576. 417 (76%) of the 545 recorded units exhibited delay epoch selectivity. 

4.6.8 Spike Count Correlation (rsc) and Signal Correlation (rsignal) Analysis 

In order to compute rsc, we first z-scored each unit’s spike counts for each condition 

(i.e. stimulus location) in each epoch. Z-scoring separately for each condition 

removes the spike rate variability across conditions due simply to variability in 

firing rate responses to different stimuli (i.e. stimulus selectivity); z-scoring also 

removes differences in baseline firing rates for different neurons. We then grouped 

units into simultaneously recorded pairs (n=12,006) and computed Pearson’s 

correlation coefficients (rsc,) between the z-scored spike counts (Cohen and Kohn, 

2011; Leavitt et al., 2013). We minimized the risk of falsely inflating the correlation 

values by excluding correlations between units on the same electrode from analysis. 

rsc can covary with firing rate (la Rocha et al., 2007; Cohen and Kohn, 2011), 

so in order to ensure that differences in rsc across epochs were not confounded by 

differences in firing rates, we implemented a distribution matching procedure as in 

(Churchland et al., 2010; Ruff and Cohen, 2014). To create matched distributions, 

we first computed the distribution of geometric mean firing rates for every pair of 

neurons included in the rsc analysis, for each epoch. Next, we computed the greatest 
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common distribution present across all epochs. The distributions in each epoch were 

matched to the common distribution by randomly discarding data points from each 

bin of an epoch’s distribution, until each epoch’s bins contained the same number of 

data points as those of the common distribution. This reduced the number of 

correlation pairs from 12,006 to 10,535. This distribution-matching procedure was 

repeated 2000 times. The mean of these 2000 distributions is plotted in Figure 4.2a. 

We used a bootstrap test to determine whether the mean pairwise rsc during a given 

epoch was different from zero and/or different from other epochs. We first computed 

the mean within each of the 2000 firing rate-matched rsc distributions, yielding 2000 

estimates of the mean. If the 0.1th percentile of this distribution of 2000 mean rsc 

values was greater than zero, we deemed it significantly greater than zero. If the 

central 99.9% of the distributions of mean rsc values for two epochs did not overlap, 

we deemed them significantly different. 

Signal correlation (rsignal) was computed as the correlation of two neurons’ 

mean responses to each of the 16 stimuli. To determine whether tuning similarity 

affects rsc, we performed a bootstrap test similar to the one described above. For 

each of the 2000 firing rate-matched rsc distributions, we subdivided the rsc values 

based on their corresponding rsignal value. Neuron pairs with rsignal > 0.25 were 
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categorized as “similarly-tuned” and pairs with rsignal < –0.25 as “dissimilarly-tuned”. 

We then computed the median rsc within each of the 2000 groups of similarly- and 

dissimilarly-tuned neuron pairs, yielding six distributions of median rsc values 

(three epochs × two tuning similarity groups). If the central 99.9% of two 

distributions of median rsc values did not overlap, we deemed them significantly 

different. 

4.6.9 Population Decoding 

We used a support vector machine (SVM; Libsvm 3.14), a linear classifier, to extract 

task-related activity from the population-level representations of simultaneously-

recorded neuronal ensembles (Cortes and Vapnik, 1995; Chang and Lin, 2011). The 

SVM used epoch-averaged firing rate data from an ensemble to predict at which of 

the 16 locations the stimulus appeared in a given trial during each the stimulus and 

delay epochs. Each neuron constitutes a dimension in the multidimensional 

population space, and the SVM seeks to find the boundaries that best distinguish 

between population responses to each stimulus location. Units that fired in fewer 

than 5% of trials, or fired at a mean rate of less than 0.5Hz were excluded from 

analysis. We scaled each unit’s firing rates to [-1, 1] by subtracting the midrange 

rate value (max+min)/2 and dividing by one-half the range (max-min)/2, in order to 
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prevent units with larger absolute changes in firing rate from dominating the 

classification boundaries. These two parameters were determined from the training 

set and applied to both the training and testing sets. We assessed the classifier’s 

performance using five-fold cross-validation, such that 80% of the trials were used 

to train the decoder (the “training set”), and the decoder attempts to classify the 

remaining 20% of the trials (the “testing set”). 

In order to test whether the rsc structure affects the fidelity of ensemble 

representations during WM, we removed the rsc structure from the neural data 

using a shuffling procedure identical to that described in (Tremblay et al., 2014). 

The shuffling procedure consisted of randomizing the trial order within each 

location condition for each neuron, such that the condition (i.e. the remembered 

location) for a given trial remained the same for all neurons, but the firing rates for 

each neuron were drawn from different trials. This procedure destroys the 

simultaneity, and thus the intrinsic rsc structure, in the recordings. The decoding 

analysis was then run on the shuffled firing rates. The shuffled decoding procedure 

was repeated 200 times, and the mean of these 200 iterations was taken as the “rsc-

shuffled” decoding accuracy. We refer to the percent change in decoding accuracy 

due to shuffling as Δshuffle, defined as ((accuracyrsc-shuffled/accuracyrsc-intact)-1)×100%. 
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We define “coding efficiency” as the amount of WM information in an 

ensemble of a given size relative to another ensemble of the same size, computed as 

((accuracyensemble1 /accuracyensemble2)-1)×100%. 

In order to ensure that our results were robust to the choice of classifier, we 

repeated our decoding analyses using logistic regression instead of SVM. The data 

analysis procedure for the logistic regression was identical to that of SVM (i.e. 

excluding low firing rate units, scaling firing rates, and cross-validation procedure), 

except we used the LIBLINEAR library (Fan et al., 2008) to perform logistic 

regression instead of SVM. As in the SVM, each unit is a predictor, there are no 

interaction terms, and the neuronal firing rates are used to predict the remembered 

location. In the context of our analysis, the relevant differences between SVM and 

logistic regression are that they have different loss (sometimes called error) 

functions, and that logistic regression is probabilistic while SVM is deterministic 

(see (Fan et al., 2008) for more detail). 

4.6.10 Functional anatomy 

To compare the widths of the rsignal distributions of the near-max rsc+rsignal ensembles, 

near-max rsignal-only ensembles, and full recorded ensembles, we first computed the 

absolute value of the rsignal deviation (|rsignal deviation|) of each unit pair in an 
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ensemble. The rsignal deviation is defined as the difference between a unit pair’s rsignal 

and the mean rsignal of the ensemble to which the unit pair belongs. We then assessed 

the difference between the |rsignal deviations| in each type of ensemble (rsc+rsignal, 

rsignal-only, and full recorded ensemble) by fitting a linear mixed-effects model with 

ensemble type as a fixed effect and recording session as a random effect to predict 

|rsignal deviation|. Pairwise significance between ensemble types was determined by 

a Bonferroni-corrected F-test on the difference between the two groups’ coefficients, 

the degrees of freedom approximated using the Satterthwaite equation. Distance 

between units (interunit distance) in each ensemble type was compared using a 

similar linear mixed-effects model, but to predict interunit distance. The measures 

of variability displayed in Figure 4.6b&c are Bonferonni-corrected simultaneous 

comparison intervals, generated using equation 3.32 in (Hochberg and Tamhane, 

1987). 

The strength of topography was assessed by computing the Pearson 

correlation between every simultaneously-recorded unit pair’s rsignal and interunit 

distance within each group of ensembles (rsc+rsignal, rsignal-only, and full recorded 

ensemble). Significance was assessed using a bootstrap test: the distributions of 

rsignal and interunit distance were randomly sampled, with replacement, to generate 
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new vectors of length equal to the original distributions, and the Pearson correlation 

computed between the new resampled vectors. This procedure was repeated 10,000 

times to generate a distribution of correlation coefficients. The strength of 

topography for two ensemble groups was significantly different at P < α if the 

central proportion of size 1 – α of the two groups’ bootstrapped correlation 

coefficients did not overlap. 

4.6.11 Non-selective noise-shaping neuron analysis 

In order to find non-selective noise-shaping neurons, we examined the results of the 

rsignal + rsc optimized procedure and identified all instances in which adding a non-

delay-selective neuron (P ≥ 0.05, one-way Kruskal-Wallis ANOVA, firing rate × 

location) increased the information content of the ensemble. We then used the near-

max rsignal + rsc ensembles to decode firing rate data from which the rsc structure had 

been shuffled out, and compared the amount of information these units contributed 

to an ensemble before and after shuffling. Note that using the near-max rsignal + rsc 

ensembles to decode firing data from which the rsc structure has been shuffled out is 

not the same as the rsignal-only optimized procedure. While both involve decoding rsc-

shuffled firing rates, in the former case the ensembles are generated using rsc-intact 

data, whereas in the latter case the ensembles are generated using rsc-shuffled data. 
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We performed a control analysis to determine whether WM-selective units 

that contribute similar amounts of information to an ensemble as non-selective 

noise-shaping units also contribute information by modifying the rsc structure 

(Supplementary Figure 4.8). We accomplished this analysis by using a distribution 

matching procedure similar to the one used to match distributions of firing rates in 

the pairwise rsc analysis. First, we computed the distributions of improvements in 

decoding accuracy from non-selective noise-shaping units and selective units. Next, 

we randomly discarded data points from each bin of the selective units’ distribution 

until it matched the non-selective noise-shaping units’ distribution. The same data 

points were discarded from the distribution of selective units’ decoding accuracy on 

the rsc-shuffled firing rates. This procedure was repeated 2000 times. We then 

computed the median within each of these 2000 matched distributions for rsc-intact 

data and the rsc-shuffled data. If the central 95% of the two distributions of median 

improvement in decoding accuracy did not overlap, we deemed them significantly 

different. We also performed an additional control analysis using a standard 

ANOVA to assess selectivity instead of a non-parametric Kruskal-Wallis ANOVA. 
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4.8 Supplemental Data 

Supplementary Figure 4.1: Decoding in full ensembles. (a) Decoding performance 
for full ensembles in each session. (b) Effects of removing the rsc structure ( shuffle) 
during the delay epoch for each session. Removing the rsc shuffling has a net effect 
of improving decoding accuracy in the full ensembles (i.e. ensembles including all 
simultaneously-recorded neurons). The black line denotes the across-session mean. 
*P = 0.0032, paired t-test. shuffle = ((accuracyrsc-shuffled / accuracyrsc-intact)-1)×100. 
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Supplementary Figure 4.2: Decoding saturation curves for the best individual unit 
vs. best subensemble methods. Normalized decoding accuracy (y-axis) as a function 
of normalized ensemble size (x-axis) is plotted for the best individual unit (teal), 
optimized (violet), and random (grey) ensembles. The normalized ensemble size at 
which normalized decoding accuracy of .95 is achieved is shown for the three 
procedures. 
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Supplementary Figure 4.3: Effects of rsc structure on ensemble coding efficiency 
when using logistic regression. (a) Similar to Figure 4.4b, but using logistic 
regression instead of SVM. Coding efficiency of rsignal + rsc ensembles and rsignal-only 
ensembles, relative to the best individual unit ensembles (y-axis), as a function of 
ensemble size (x-axis). The violet line running along the bottom indicates ensemble 
sizes for which the rsignal + rsc ensembles are significantly more efficient than the best 
individual unit ensembles (P < 0.05, paired t-test, Hochberg-corrected); the blue line 
is similar, but for rsignal-only ensembles vs. best individual unit ensembles. (b) 
Coding efficiency of rsignal-only ensembles relative to rsignal + rsc  ensembles; similar to 
Figure 4.4c, but using logistic regression instead of SVM. A positive value indicates 
that shuffling out the rsc structure improves decoding. The striped blue and violet 
line running along the bottom indicates ensemble sizes for which the efficiency of 
rsignal + rsc ensembles and rsignal-only ensembles are significantly different (P < 0.05, 
paired t-test, Hochberg-corrected). 
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Supplementary Figure 4.4: Effects of the rsc structure during the stimulus vs. delay 
epochs. (a) Similar to Figure 4.4c, but during the stimulus epoch. Coding efficiency 
of rsignal-only ensembles relative to rsignal + rsc ensembles for individual sessions. A 
positive value indicates that shuffling out the rsc structure improves decoding. Each 
colored line is an individual session. (b) Across-session mean coding efficiency of 
rsignal-only ensembles relative to rsignal + rsc ensembles during the stimulus epoch. The 
gray lines running along the bottom indicate ensemble sizes for which the efficiency 
of rsignal + rsc ensembles and rsignal-only ensembles are significantly different (P < 0.05, 
paired t-test, Hochberg-corrected). (c) Identical data as Figure 4.4c, presented again 
here for comparison with stimulus epoch data. Coding efficiency of rsignal-only 
ensembles relative to rsignal + rsc ensembles for individual sessions. (d) Identical data 
as Figure 4.4c, presented again here for comparison with stimulus epoch data. 
Across-session mean coding efficiency of rsignal-only ensembles relative to rsignal + rsc 
ensembles.
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Supplementary Figure 4.5: shuffle and coding efficiency in random vs. optimized 
ensembles. (a) shuffle and ensemble size are correlated in random ensembles. The 
Spearman rank correlation coefficient (ρ) between ensemble size and shuffle in 
random ensembles, for each of the 12 recording sessions. A positive correlation 
indicates that shuffling out the rsc structure increases decoding accuracy more in 
larger ensembles. * P < 0.01, Spearman correlation. (b) rsignal + rsc ensembles are 
more efficient than random ensembles at nearly all ensemble sizes. Coding 
efficiency of the rsignal + rsc ensembles relative to random ensembles (y-axis) as a 
function of ensemble size (x-axis). A positive value indicates that the rsignal + rsc 
ensembles are more efficient for a given ensemble size. The gray line running along 
the bottom indicates ensemble sizes for which the rsignal + rsc ensembles are 
significantly more efficient than the random ensembles (P < 0.05, paired t-test, 
Hochberg-corrected). 
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Supplementary Figure 4.6: Ensemble construction sequence correlation shows that 
different ensembles maximize WM information when the rsc structure is intact vs. 
removed. (a) Sequence order correlation between rsignal + rsc ensembles (y-axis) and 
rsignal-only ensembles (x-axis) for an example session. The nth unit added to the 
ensemble in the rsignal-only method (x-axis) is plotted against the n at which it was 
added to the ensemble in the rsignal + rsc method. For example, the 5th unit added in 
the rsignal-only method is added 4th in the rsignal + rsc method. If the sequence in which 
the two methods added units was identical, all the points would fall along the unity 
line (gray), and the Spearman rank correlation coefficient (ρ) between the two 
sequences would equal 1, indicating that identical ensembles maximize WM 
information regardless of whether the rsc structure is intact. Likewise, ρ = 0 means 
that the relationship between the sequences is random; the ensembles that 
maximize WM information when the rsc structure is intact are entirely distinct from 
the ensembles that maximize WM information when the rsc structure has been 
removed. (b) Spearman rank correlation coefficient (ρ) between the rsignal + rsc 

ensembles and rsignal-only ensembles (y-axis) for each session (x-axis). Error bars are 
Bonferroni-corrected 95% confidence intervals. The correlation between ensemble 
sequences is significantly less than 1 in every session (P < 0.05, Bonferroni-
corrected), indicating that the ensembles that maximize WM information when the 
rsc structure is intact are built in a different sequence than the ensembles that 
maximize WM information when the rsc structure has been removed. The range of ρ-
values (0.53-0.86) shows that there is some degree of similarity to the sequences in 
which the two methods recruit neurons to the ensembles. 
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Supplementary Figure 4.7: Functional anatomy analyses are consistent even when 
using different decoding saturation thresholds. (a) rsignal distributions for the full 
ensembles (grey), near-max rsignal + rsc ensembles (violet), and near-max rsignal-only 
ensembles (blue), pooled across all sessions. Identical to Figure 4.5a, but using a 
threshold of 90% of maximum decoding. The rsignal + rsc ensemble and rsignal-only 
ensemble distributions are both significantly different from the full ensemble 
distributions (P < 0.001, χ2-test, Bonferroni-corrected; computed using non-
overlapping bins of size = 0.1). (b) Identical to panel (a), but using a threshold of 
80% of maximum decoding. All three distributions are significantly different from 
each other (P < 0.001, χ2-test, Bonferroni-corrected; computed using non-
overlapping bins of size = 0.1). (c) Mean |rsignal deviation| in the three categories of 
ensembles. Identical to Figure 4.5b, but using a threshold of 90% of maximum 
decoding. rsignal deviation is defined as the difference between a unit pair’s rsignal and 
the mean rsignal of the ensemble to which the unit pair belongs. **P <<0.001; *P = 
0.01, F-test—Materials and Methods. Shaded regions represent Bonferroni-
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corrected 95% comparison intervals between group means—Materials and Methods. 
(d) Identical to panel (c), but using a threshold of 80% of maximum decoding. (e) 
Mean interunit distance in each of the three ensemble groups. Identical to Figure 
4.5c, but using a threshold of 90% of maximum decoding. **P<<0.001, F-test. 
Shaded regions represent Bonferroni-corrected 95% comparison intervals between 
group means. (f) Identical to panel (e), but using a threshold of 80% of maximum 
decoding. (g) Correlation between interunit distance and rsignal in the three ensemble 
groups. Identical to Figure 4.5d, but using a threshold of 90% of maximum 
decoding. **P << 0.001, bootstrap test. Shaded regions represent bootstrapped 95% 
confidence intervals. (h) Identical to panel (g), but using a threshold of 80% of 
maximum decoding. 
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Supplementary Figure 4.8: Descriptive statistics and control analyses for non-
selective “noise-shaping” units. (a) Histogram of delay epoch firing rates of non-
selective (P ≥ 0.05, Kruskal-Wallis ANOVA; blue) and selective (P < 0.05, Kruskal-
Wallis ANOVA; orange) units in best ensembles. Firing rate bins are plotted on the 
x-axis, and bin counts are plotted on the y-axis. (b) Histogram of delay epoch 
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decoding accuracies of non-selective and selective units in best ensembles. Decoding 
accuracy bins are plotted on the x-axis, and bin counts are plotted on the y-axis. (c) 
Parametric selectivity control. We reran the analysis in Figure 4.6, defining 
selectivity as P < 0.05, ANOVA, instead of Kruskal-Wallis ANOVA. The change in 
decoding accuracy from adding non-selective units to best ensembles (y-axis) is 
compared when the rsc structure is intact (left) and removed (right). Each line is the 
change for an individual unit. The bolded line is the median. Similar to when using 
a non-parametric measure of WM selectivity, removing the rsc structure eliminates 
the information gain contributed by these units. *P = 0.001, signed-rank test; **P = 
0.01, paired signed-rank test; ns P = 0.58, signed-rank test; n = 13. (d) Selective unit 
control. We used a distribution-matching procedure (see methods) to obtain a 
distribution of WM-selective units (P < 0.05, Kruskal-Wallis ANOVA) that 
contribute equivalent amounts of information to an ensemble as the non-selective 
units and performed a similar analysis as in Figure 4.6. The center of each box is 
the median, and the notches extend from the median  1.57(q3-q1)/√n, where q3 is the 
75th percentile, q1 is the 25th percentile, and n = 13, the sample size of a single 
matched distribution. The bottom box edge = q1, top edge = q3, and the whiskers 
extend approximately 99.3% distribution coverage. Removing the rsc structure does 
not change the magnitude of information added to the ensemble by these units (P > 
0.05, bootstrap test see methods), thus it is not simply the case that units that 
weakly improve ensemble information do so by modifying the rsc structure. ns (not 
significant), P > 0.05, bootstrap test. (e) Selective unit + parametric selectivity 
control. Same as (b), but defining selectivity as P < 0.05, ANOVA, instead of 
Kruskal-Wallis ANOVA. The results are similar for the two methods. ns P > 0.05, 
bootstrap test. 
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Supplementary Figure 4.9: Comparison of untuned noise-shaping neurons during 
stimulus and delay epochs. (a) Similar to Figure 4.6c, but during the stimulus 
epoch. Change in decoding accuracy from adding non-selective units to pre-
saturation ensembles (y-axis) when the rsc structure is intact (left) and removed 
(right). Each line is the change for an individual unit. The bolded line is the median. 
#P = 0.013, signed-rank test; **P < 0.003, paired signed-rank test; ns (not 
significant), P > 0.05, signed-rank test; n = 15. (b) Contribution of untuned, noise-
shaping units during the delay epoch. Identical to Figure 4.6c, presented again here 
for comparison with stimulus epoch data. *P = 0.001, signed-rank test, **P < 0.003, 
paired signed-rank test; ns P > 0.05, signed-rank test; n = 16. 
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5.1 Summary 

In Experiment 1 we determined the tuning properties of area 8a neuron during a 

simple visually-guided saccade task. We then examined the relationship between 

neurons’ tuning and rsc during fixation, prior to the presentation of visual stimuli. 

We found that rsc decreased as a function of distance between neurons, positive rsc 

were stronger between similarly-tuned neurons, and negative rsc were stronger 

between dissimilarly-tuned neurons. Most importantly, we found that rsc between 

anatomically distant (>3mm) neurons with dissimilar tuning were predominantly 

negative, suggestive of tonic resting-state inhibition. This pattern of intrinsic 

functional connectivity supports the model of a recurrent-excitatory lateral-

inhibitory network structure in dlPFC. This experiment addressed Aim 2, 

determining the magnitude and spatial scale of functional interactions in dlPFC in 

the absence of stimulus input. 

 Experiment 2 was designed to address three aims: Aim 1, to determine how 

ensembles of simultaneously-recorded neurons in dlPFC area 8a represent SWM, 

and how it differs from single neuron representations; Aim 3, quantifying whether 

functional (i.e. task-related) properties of neurons in dlPFC exhibit topography; and 

Aim 4, to examine whether neuronal tuning for visual space during WM is biased by 
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the meridians of the visual field. In this experiment the animals performed an 

oculomotor delayed-response (ODR) task. We found that neuronal SWM 

representations were asymmetrically biased not to extend beyond the meridians of 

the visual field induce field. This bias is present at multiple levels of examination: 

in single neuron firing rates, the rsc structure, and neuronal ensemble 

representations. The subjects’ saccades also exhibited similar biases to those 

reported in the psychophysical literature. These results could be considered 

neuronal correlates of known biases in WM-based judgments of visual space. We 

also found that dlPFC neurons are anatomically clustered in a non-retinotopic 

manner that partially reflects the organization of visual space.  

 The final experiment addressed Aim 1, determining how ensembles of 

simultaneously-recorded neurons in dlPFC area 8a represent SWM and how it 

differs from single neuron representations, and Aim 3, quantifying whether 

functional (i.e. task-related) properties of neurons in dlPFC exhibit topography. 

This experiment utilized the same ODR task as Experiment 2. We found that WM 

maintenance modulated the rsc structure in manner indicative of increased coupling 

between similarly-tuned neurons and increased inhibition between dissimilarly-

tuned neurons. We then examined the effects of the rsc structure on WM coding, and 
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found that it could facilitate or impair the readout of WM representations, 

depending on the size of the ensemble and tuning properties of its constituent 

neurons. Interestingly, ensembles of neurons that contained the most robust SWM 

representations were more anatomically dispersed than predicted by the statistics 

of the full recorded population of neurons. Finally, we found neurons that contained 

little WM information when examined in isolation, but contributed to coding when 

part of an ensemble by shaping the ensemble’s rsc structure. This final result is a 

powerful example of a phenomenon that is inaccessible in individually-recorded 

neurons, and emphasizes the importance of multi-neuron recordings for elucidating 

the neuronal mechanisms of cognition. 

5.2 Reconciling the relationship between tuning and rsc across 

experiments 

All three experiments found a similar relationship between pairs of neurons’ 

tuning and rsc during fixation; rsc positively correlates with tuning similarity. 

Experiments 2 and 3 each extend this analysis to the stimulus and delay epochs, 

but the results in each experiment appear to contradict one another (Figure 3.5, 

Figure 4.2b). Experiment 3 found that the positive correlation between rsc and 

tuning observed during fixation increased in strength during the stimulus and 
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delay epochs (Figure 4.2b). Experiment 2, however, found that this effect appears to 

invert during the stimulus epoch; rsc between similarly-tuned neurons are lower 

than between dissimilarly-tuned neurons (Figure 3.5). Experiment 2 also found that 

during the delay epoch, the effect is non-linearly meridian-dependent (Figure 3.5). 

The apparent discrepancies between Experiments 2 and 3 can be reconciled by the 

difference in how the two experiments quantify tuning similarity. Experiment 3 

quantified tuning similarity as the signal correlation (rsignal) between two neurons. 

In contrast, Experiment 2 first fit a 2d polynomial to each neuron’s responses to the 

16 stimulus locations, then identified the peak (i.e. maximum) of the fitted function 

(Figure 3.4), and assigned each pair of neurons to a group depending on the spatial 

relationship of the quadrants containing the two neurons’ fitted response peaks 

(Figure 3.5, top). Furthermore, neurons in dlPFC—and across multiple regions of 

PFC—are known to have non-traditional tuning functions unlike neurons in 

sensory cortex, which are typically Gaussian or parametric (Rainer et al., 1998; 

Constantinidis et al., 2002; Rigotti et al., 2013; Fusi et al., 2016). The non-

traditional tuning and multidimensional selectivity of PFC neurons suggests that 

standard measures of tuning similarity may be overly simplistic for characterizing 

the functional properties of PFC (Fusi et al., 2016). 
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5.3 Stability of prefrontal WM representations 

Goldman-Rakic’s domain-specific model of PFC WM function, at its most extreme, 

proposes that individual subregions of lateral PFC intrinsically encode WM for 

individual features or sensory modalities. As discussed in the introduction of this 

thesis, such a claim is no longer tenable. There arguably exists an equally-extreme 

inverse to the domain-specific model. It is referred to as the “adaptive coding” model 

of PFC function, and it posits that PFC neurons have no intrinsic selectivity for 

specific features, and instead their selectivity adapts to represent inputs according 

to their task-relevance (Duncan, 2001). While there is no doubt that selectivity in 

the PFC is remarkably plastic and often represents supersensory and/or abstract 

features, especially those defined by behavioral relevance (Miller and Cohen, 2001), 

the wealth of domain-specific deficits observed in focal PFC lesions undermine the 

extreme interpretation of this model (Petrides, 2000a; 2005a; 2005b). Furthermore, 

a series of experiments examining lateral PFC activity in monkeys before and after 

training on WM tasks demonstrated the existence of sustained, spatially-selective 

responses after stimulus offset prior to training, and changes in the proportion of 

tuned neurons, the tuning specificity of single neurons, and the patterns of cross-

correlations and rsc after training, and found that many of these effects exhibited 
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differential anatomical specificity (see (Constantinidis and Klingberg, 2016) for a 

review). 

Some of the results presented in this thesis potentially provide a counterpoint 

to recent findings interpreted to support the adaptive coding model. In an 

experiment conducted by Stokes and colleagues, monkeys first learned a set of 

arbitrary associations between cue and target stimuli (e.g. if ‘house’ is the cue, 

‘banana’ is the target; if ‘car’ is the cue, ‘tree’ is the target) (Stokes et al., 2013). The 

researchers then recorded single cell activity in areas 9/46 and 8 while monkeys 

performed a task in which a cue object was initially presented, then a series of non-

matching targets were presented during which the animal had to withhold a 

response, and finally respond via saccade when the matching target was presented. 

They then performed a cross-temporal decoding analysis on the neuronal 

pseudopopulation, which consisted of training a classifier on the pseudopopulation 

firing rates integrated over a single 50ms window at a given point in the task, and 

testing it on every other 50ms window across the remainder of the task. They found 

that the decoding performance dropped precipitously as the training window moved 

further in time away from the testing window. This effect was particularly 

pronounced when training within the cue and testing within the delay epoch. The 
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authors interpreted these results to indicate that the sustained dlPFC activity 

observed during WM is not a temporally-consistent representation of remembered 

stimuli or upcoming response features, but instead a context-dependent dynamic 

code that reflects the current task demands, in this case whether each sequentially-

presented target stimulus should elicit a response. 

In Experiments 2 and 3 of this thesis, I presented data showing it is possible to 

decode which of 16 stimulus locations was being remembered using ensemble firing 

rates integrated over timescales ranging from 345-1349ms. Such robust decoding of 

high-resolution SWM information using firing rates integrated over large and 

variable timescales necessitates temporally-stable dimension(s) in the ensemble 

code. This appears to conflict with the findings of Stokes and colleagues. One could 

attempt to account for this discrepancy by appealing to the lack of simultaneity in 

their neuronal recordings, but the magnitudes of their reported changes in decoding 

performance exceed the range of effects of the rsc structure reported in Experiment 

3. This would also require one to contrive a model with temporal and task-variable 

modulation of the rsc structure. Alternatively, the ensemble dimensionality is high 

enough that strong temporal dynamics and stable stimulus coding could co-exist in 

separate subspaces. Indeed, Murray et al. found exactly this when analyzing 
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pseudopopulation data from an ODR and a somatosensory delayed-match-to-sample 

task (Murray et al., 2017). Through clever use of a traditional dimensionality-

reduction technique (PCA), they showed that heterogeneous temporal dynamics in 

single-neuron and ensemble activity could exist alongside temporally stable 

population coding of the remembered stimulus. These findings provide yet another 

example of the utility of ensemble-level approaches for elucidating the mechanisms 

of cognition and neural coding. 

It remains possible that there is additional task-relevant information encoded 

in the temporal dynamics of dlPFC WM activity that is not present in the stable 

coding subspace. One way to test this would be to compare the performance of a rate 

classifier to that of a temporal pattern classifier. In a rate classification scheme, 

which is what was used in Experiments 2 and 3 of this thesis, the inputs to the 

classifier are simply the firing rates of each neuron integrated over some time 

window. In temporal pattern classification, the spiking activity over the same time 

window as used in the rate classifier is subdivided into smaller time windows, the 

spike rate integrated over these smaller time windows, and then all the smaller 

time windows are provided to the classifier simultaneously. As an example, a rate 

classifier would use the firing rates of 20 neurons integrated across a 500ms time 
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window, while the input to the temporal pattern classifier would consists of spike 

rates integrated over every non-overlapping 50ms time window contained in the 

same 500ms time window used for the rate classifier. Thus the rate classifier would 

have nneuron inputs (20 in the present example), while the temporal pattern classifier 

would have nneuron × nsubwindows inputs (200 in the present example) which also contain 

the temporal dynamics. Nandy et al. applied this methodology to V4 neurons 

recorded during passive receptive field mapping using stimuli with strong 

spatiotemporal dynamics (Nandy et al., 2016). They found that the temporal 

pattern classifier significantly outperformed the rate classifier, demonstrating that 

there is considerable stimulus information encoded in the temporal dynamics of V4 

neurons. Applying this approach to dlPFC recordings such as those collected for 

thesis could clarify the role of temporal dynamics in dlPFC representations and 

hone the specificities of the dynamic coding model of PFC. 

5.4 Layer-specific functional properties of dlPFC 

dlPFC, like cortx in general, is known to have different input sources and output 

destinations, and contain different types and proportions of neurons (Kritzer and 

Goldman-Rakic, 1995; Petrides and Pandya, 1999). Thus depth information is 

extremely important for advancing our knowledge of the mechanisms of working 
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memory and cortical circuits in general. One shortcoming of the microelectrode 

arrays we used for our recordings is that they do not provide any control over or 

explicit information about penetration depth. 

The electrodes on the arrays we used were 1.5mm long, however the 

penetration depth was likely shallower for multiple reasons. The first reason 

originates from our surgical procedures for the array implantation. The array is 

implanted into the cortical surface by means of a pneumatic impactor (not unlike a 

captive bolt gun), which can be adjusted to obtain different electrode penetration 

depths. We set the impactor to a 1mm penetration depth despite our electrodes 

being 1.5mm, as we found during prior implantation surgeries that this approach 

mitigated local cerebral trauma around the implantation site. The second factor 

affecting the electrode penetration depth is that the electrodes are not resting 

against the first cortical layer before implantation; pia matter and blood vessels are 

present between the electrode tips and the cortex. Furthermore, the brain is not 

mechanically static. Hemodynamic pulsations can cause variability in the array 

implantation depth depending on when in the pulse cycle the array is implanted. 

Finally, the array encompasses a large enough area of 8a (4mmx4mm) that the 

underlying cortex potentially curves away from the array by a non-trivial amount. 
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Accounting for the factors affecting the electrode penetration depth our arrays, 

we estimate that our electrodes were no more than 1mm deep. Thus we were likely 

recording from the lower layer III (i.e. layer IIIc) or layer IV (Kritzer and Goldman-

Rakic, 1995; Petrides and Pandya, 1999). Layer IIIc in this area has been observed 

to have distant and extensive lateral projections (Kritzer and Goldman-Rakic, 

1995). Interestingly, the targets of these projections are not homogeneous, and 

instead exhibit distinct spatial periodicity. It is possible that the strength of 

functional interactions between neurons in this layer (e.g. rsc) exhibit corresponding 

spatial periodicity, a hypothesis that could potentially be addressed with the data 

collected for this thesis. 

Research on the layer-specific and network-level functional properties of 

neurons in dlPFC is unfortunately limited, due both to the difficulty of precise 

depth measurements and novelty of large-scale recording technologies. However, a 

handful of studies auger advancement in this domain. One study recorded from 

chronically-implanted depth-adjustable microelectrode arrays implanted across 

areas 8a and 9/46 while macaques performed an ODR task (Markowitz et al., 2015). 

The researchers segregated their recorded neurons based on whether they exhibited 

“storage”- or “response”-related activity, and found that “storage” neurons were 
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located primarily within the top 1mm of 8a, while “response” neurons were 

predominantly found at depths of 1-2mm in area 9/46. These results provide 

electrophysiological corroboration of anatomical studies linking superficial lateral 

projections to maintenance or storage functions of WM, and descending projections 

from deeper PFC layers to subcortical oculomotor structures which are thought to 

be involved in response generation (Kritzer and Goldman-Rakic, 1995). Another 

series of studies (see (Opris and Casanova, 2014) for a review) used arrays of multi-

contact laminar probes to record from layers 2/3 and 5 of areas 9/46d, 8ad, and 6 

during delayed spatial and object match-to-sample tasks. They found segregation of 

task-specific responses across cortical layers, as well as layer- and microcolumn-

dependent differences in cross-correlation strength and latency between neurons. 

They also found that applying microstimulation using a pattern similar to that 

which was recorded during correct behavioral performance improves the animals’ 

performance. Extending these techniques to simultaneous recordings of dlPFC and 

its projection targets such as parietal and extrastriate cortex could elucidate the 

micro- and macro-network mechanisms that give rise to WM. 
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5.5 FEF, 8a, and prefrontal cortex 

The frontal eye fields (FEF), located in the arcuate sulcus, are commonly described 

as part of PFC, and area 8a as an extension of FEF (Ferrera et al., 1999; Sommer 

and Wurtz, 2001; Gregoriou et al., 2009; Schafer and Moore, 2011; Squire et al., 

2013; Bichot et al., 2015). Such descriptions overlook the anatomical and 

physiological differences between 8a and FEF; FEF bears more similarity to 

premotor cortex, while 8a is much more like other regions in PFC. While only 10-

20% of neurons in FEF exhibit ipsilateral selectivity (Bruce and Goldberg, 1985; 

Bruce et al., 1985; Sommer and Wurtz, 2000), a larger proportion of neurons in area 

8a—up to 40%—have ipsilateral stimulus selectivity (Lennert and Martinez-

Trujillo, 2011). Area 8a also has a well-defined granular layer while FEF is 

distinctly dysgranular (Petrides, 2005a). Furthermore, low-current 

microstimulation (<50mA) does not evoke saccades in area 8a, while it does in FEF 

(Bruce et al., 1985; Schall et al., 1995; Petrides, 2005a). Finally, 8a exhibits 

selectivity for non-spatial object features (Miller and Cohen, 2001; Hussar and 

Pasternak, 2010; Mendoza-Halliday et al., 2014), while such selectivity has not been 

found in FEF (Ferrera et al., 1999). Thus, the properties of area 8a neurons during 

visual and WM tasks cannot be equated to the properties of FEF neurons. 
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FEF primarily has receptive fields in the contralateral visual field, even 

though it is considered to be downstream from areas MST and IT, both of which 

encode substantial regions of the ipsilateral visual field (Desimone et al., 1985; 

Raiguel et al., 1997). It is possible that FEF lies closer to the “motor” end of the 

visuomotor transformation process, after receptive fields have reverted to a more 

retinotopic organization and recovered their contralateral representational bias. 

This could be a fundamental feature of information transmission to motor 

structures, as movement coding is usually restricted to effectors in the contralateral 

side of the body. Given that the superior colliculus, a structure known to lie near 

the distal end of the visuomotor transformation, also exhibits a hemifield bias 

similar to that found in FEF (Goldberg and Wurtz, 1972a; 1972b; Wurtz and 

Goldberg, 1972), this explanation appears parsimonious.  

However, it is unclear whether area 8a and FEF are serially connected in the 

stream of visuomotor processing. An alternative possibility is that association areas 

such as 8a utilize connections with other motor areas such as FEF to monitor and/or 

select between representations of sensory information and motor plans during 

complex tasks (Petrides, 2005a; 2005b). Supporting this hypothesis, patients with 

prefrontal lesions do not show sensory or motor deficits in simple visuomotor tasks 
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such as visually guided saccades, while they are strongly impaired when performing 

tasks that require contextual flexibility of behavior (Petrides, 1982; 1987; 2005a; 

2005b). Thus, within this framework the dlPFC may play a role in tasks in which 

the transformation of sensory information into motor commands is not direct, but 

requires flexible behavior (Petrides, 2005a; Fuster, 2008). Anatomical and 

evolutionary evidence supports this hypothesis, as the dlPFC is one of the regions 

that has undergone the most significant relative size increases in primates, 

compared to other animals with less sophisticated behavioral repertoires (Fuster, 

2008). 

5.6 Sustained activity underlying WM: A ubiquitous cortical 

phenomenon? 

The data gathered for this thesis were recorded exclusively from macaque dlPFC 

area 8a, falling in with the preponderance of literature focusing on the role of dlPFC 

in working memory. However, reports of WM-related sustained activity in parietal 

cortex (Andersen et al., 1985) and the temporal lobe (Fuster and Jervey, 1981) date 

back to the 1980s. These findings led to the current view that WM-related sustained 

activity is not exclusive to prefrontal neurons, but exists within a network of 

association cortices (Goldman-Rakic, 1995). The role of each area in the origin of 
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this phenomenon and in working memory in general remains unclear. Studies over 

the last decades have also reported sustained activity across a range of cortical 

areas (predominantly in extrastriate and higher-level sensory regions—see 

(Pasternak and Greenlee, 2005) for a review), and subcortical structures (Hikosaka 

et al., 1989; Watanabe and Funahashi, 2004; Takaura et al., 2011) the thalamus, 

superior colliculus, and the basal ganglia. These findings are often cited to support 

the theory that sustained, WM-related activity is a ubiquitous feature of cortical 

networks (Christophel et al., 2017).  

Of particular note are findings of sustained activity in primary visual cortex 

(V1), reported in at least two studies. The first study used a figure-ground 

segregation paradigm in which V1 receptive fields were tonically stimulated, 

providing a potential explanation for the reported elevation in background firing 

during the memory period (Supèr et al., 2001). The second study using a similar 

paradigm but controlling for this potential confound reporting that sustained 

activity is present even in the absence of a stimulus in the receptive field during the 

first 500 milliseconds of the delay period (van Kerkoerle et al., 2017).  However, at 

least three other studies have reported an absence of sustained activity in V1 when 

using match-to-sample tasks for orientation (Luck et al., 1997; McAdams and 
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Maunsell, 1999), and color/shape (Fuster, 1990). Interestingly, all these negative 

results were reported in publications containing positive results for other cortical 

areas, raising the possibility that additional negative results may be unreported due 

to the scientifically-deleterious publication bias against negative results (Dickersin 

et al., 1987; Easterbrook et al., 1991; Button et al., 2013). The discrepant findings 

reported in these studies can be accounted for by multiple factors: the studies used 

different tasks; the studies reporting positive results recorded multi-unit activity, 

while the studies reporting negative results recorded from isolated single neurons; 

finally, the “sustained activity” reported in the positive studies decreased 

substantially after the visual cue offset and decayed to baseline within 500ms. 

Furthermore, negative reports of WM-related activity in visual area MT (Ferrera et 

al., 1994; Mendoza-Halliday et al., 2014), and the lack of feature dimension-

specificity among mixed reports of WM-related activity in V4 (Luck et al., 1997; 

McAdams and Maunsell, 1999; Chelazzi et al., 2001; Hayden and Gallant, 2013) call 

into question the cortical ubiquity of local network structures capable of supporting 

WM. 
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5.7 Reconciling fMRI and electrophysiological findings 

Findings from fMRI research have been used to support claims that WM-related 

activity is cortically ubiquitous. Recent studies using multivoxel pattern-

classification analysis (MVPA) have been able decode the contents of WM from early 

sensory cortices including V1, even if the mean signal intensity in these areas 

remains near baseline levels during memory delays (Harrison and Tong, 2009; 

Serences et al., 2009; Emrich et al., 2013). Interestingly, these methods often fail to 

extract feature-specific WM information when applied to PFC, which has been used 

to argue against a feature-specific role for PFC in WM (Riggall and Postle, 2012). 

These failures to decode WM feature information from PFC is peculiar considering 

the decades of electrophysiological studies reporting feature-selective WM responses 

in PFC neurons. Experiments 2 and 3 of this thesis can be counted among these 

studies. 

Some aspects of Experiments 2 and 3 bear more similarity to fMRI MVPA 

approaches than to traditional single neuron studies. MVPA is much more similar 

to the population decoding methods used in Experiments 2 and 3 than to traditional 

single neuron measures of information content, and we analyzed signals over areas 

of cortex atypical of single neuron studies (multiple mm2). Yet we were able to 
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robustly decode which of 16 locations was being held in WM. This discrepancy likely 

arises from the interaction of two factors: First, an fMRI voxel integrates BOLD 

responses over 1-27mm3 of cortical volume. The second factor has to do with cortical 

organization. Sensory cortex has a topographical organization characterized by 

cortical columns for relevant features (e.g., space, orientation or motion direction) 

(Hubel et al., 1977), whereas cortical organization in association areas may not 

follow the same principles, and single neurons or groups of neurons with different 

tuning may cluster within a space smaller than the voxel resolution. Accordingly, 

voxels in sensory cortex likely contain neurons with homogeneous or similar tuning, 

whereas voxels in PFC contain neurons with heterogeneous response properties 

that are unresolvable with the BOLD signal. Findings from Experiment 2 speak 

directly to this issue. While we found that spatial tuning for WM clustered 

anatomically in area 8a, the strength of this clustering decreased montonically over 

larger spatial scales and was strongest at scales ≤1.5mm (Figure 3.2), which is at or 

below the spatial resolution of fMRI. Additionally, while we found some degree of 

retinotopy for contralateral visual-mnemonic space across the region of cortex 

covered by the microelectrode arrays, representation of the ipsilateral hemifield was 
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not organized in this manner, which likely also contributes to the failure of fMRI to 

decode feature-specific WM information in this region. 

5.8 Features of neural circuits allowing sustained activity and WM 

Findings reported in this thesis support the theory that the sustained activity 

underlying working memory maintenance requires cortical circuits with recurrent 

network dynamics (Wang, 2001; Wimmer et al., 2014; Murray et al., 2017). 

However, there is a rich literature on the cellular, anatomical, and 

neuromodulatory features of WM circuits that are inaccessible using 

electrophysiological methods. Wang et al. have proposed that a microcircuit 

composed of pyramidal neurons and three different types of interneurons containing 

different calcium binding proteins (parvalbumin (PV), calbindin (CB) and calretinin 

(CR)) can generate sustained activity in the prefrontal cortex. Within such a circuit, 

activity is sustained after the number of recurrent connections exceed a certain 

threshold (Wang, 2006). Considering this modeling work, one would expect to find 

microcircuit differences between regions known to exhibit sustained spiking activity 

during WM tasks and regions in which such sustained activity is not found, such as 

early sensory cortices. Such differences have indeed been reported. For example, 

layer III pyramidal neurons in the prefrontal cortex have 16 times more spines than 
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in area V1. This is not simply due to larger cell bodies in pyramidal neurons, but to 

an increase in spine density, indicating that pyramidal neurons in the PFC are 

more heavily interconnected than area V1 (Elston, 2007).. Moreover, anatomical 

studies in the PFC of macaques have revealed stripe-like patterns and long lateral 

connections originating in layer IV that have the potential to connect cortical 

columns over millimeters (Goldman-Rakic and Schwartz, 1982). 

Another important difference between PFC and early sensory areas in which delay 

activity is not observed, such as V1, is the proportions of different types of 

interneurons. These cells are thought to play an important role in recurrent 

dynamics in neural circuits, and therefore in the origin of sustained activity (Wang 

et al., 2004). In area V1, PV are the most prevalent interneuron type. By contrast in 

the prefrontal cortex, CR cells are the most prevalent type (Wang, 2013). 

Interestingly, a study has reported that in human and monkey brain slices of 

prefrontal and temporal cortex, CR neurons generate sustained spiking activity 

after stimulation by a single action potential, and that spiking is terminated by 

bursts of action potentials (Wang et al., 2015). CR interneurons have been shown to 

selectively drive the activity of CB interneurons that project to dendritic trees of 

pyramidal cells in the rat hippocampus (Gulyás et al., 1996).  Unfortunately many 
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of these relationships between cell type, network structure, and function are 

difficult to test electrophysiologically, and the results of such research would 

ultimately still be correlational. Transgenic techniques may prove extremely 

powerful in this domain. Optogenetics and DREADDs (designer receptors 

exclusively activated by designer drugs (Urban and Roth, 2015)) can target specific 

cell types, affording cell type-specific manipulation for precise deconstruction of 

neuronal circuits. Optogenetic manipulation of frontal cortex parvalbumin neurons 

in mice has demonstrated their modulatory effects on signal-to-noise in local 

circuits (Sohal et al., 2009). Given the challenges of implementing optogenetic 

techniques in macaques, widespread use of these techniques to investigate the 

issues posed here are contingent on methodological advancements in macaque 

optogenetics (Gerits and Vanduffel, 2013). Pursuing these questions in marmosets 

may be a promising alternative (Kinoshita and Isa, 2015; MacDougall et al., 2016). 

The PFC is also a target of afferents from dopaminergic, noradrenergic, 

serotoninergic, and cholinergic systems (Fuster, 2008). Studies in areas 8a and 9/46 

have shown that sustained activity and performance on WM tasks are sensitive to 

dopaminergic modulation (Sawaguchi and Goldman-Rakic, 1991; Williams and 

Goldman-Rakic, 1995). Computational modeling work has suggested that dopamine 
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D1 receptor stimulation strengthens recurrent excitation and lateral inhibition 

during WM, which increases the signal-to-noise of the maintained representation 

and makes it more robust to interfering signals (Durstewitz and Seamans, 2002). 

This effect would likely be visible as a more extreme version of the rsc structure 

modulation observed in Experiments 2 and 3. Unfortunately this has yet to be 

verified experimentally, highlighting the importance of future studies that combine 

neurotransmitter and pharmacological manipulations with large-scale neuronal 

recordings. 

5.9 Future directions for WM and cognition research in PFC 

The experiments presented in this thesis investigated neuronal activity in area 8a 

during a WM task. But, as mentioned previously in this thesis, it is likely the case 

that area 8a, and dlPFC more generally, is not involved in WM per se. There are a 

staggering variety of behaviors and features found to be reliant on or represented in 

the dlPFC, these include: auditory, visual, and somatosensory object features; top-

down attention; behavioral context; reward; stimulus-response associations; and 

often retrospective and prospective versions of these phenomena as well. 

Accommodating such an expansive range of capabilities in a single model has been 

challenging. Miller and Cohen’s model of PFC function—that it is “responsible for 
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active maintenance of patterns of activity…that represent goals and the means to 

achieve them”—is justifiably hailed for clearly and articulately synthesizing so 

many seemingly disparate observations. Its generality, however, cuts both ways, as 

it suffers from a lack of testable mechanistic predictions. 

Petrides proposes a more exacting model that, while anatomically limited to 

lateral PFC, provides greater specificity and testable hypotheses (Petrides, 2005a; 

2005b). Based primarily on behavioral deficits observed after focal lesions of 

different macaque LPFC subregions, he proposes a “rostral-caudal axis of cognitive 

control”. In this model, caudal LPFC (areas 8 and 6DR) are responsible for learning 

and contextually selecting between different sensorimotor mappings, evidenced by 

lesion-induced deficits in conditional associative learning and top-down attention 

tasks (e.g. ‘green square means pick the left object and red square means pick the 

right object’, or ‘respond to change in the cued object but not the distractors’). What 

Petrides refers to as the mid-dlPFC (areas 9, 46, and 9/46v) is responsible for 

”monitoring of selections from a set of stimuli or the occurrence of stimuli from an 

expected set” (Petrides, 2005a). The prototypical example of this behavior involves a 

task in which monkeys initially select one object from an array of familiar objects, 

then following a delay are presented with the initially-selected object and another 
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object, and must select the object they did not initially select. Monkeys with mid-

dlPFC lesions exhibit no impairment if the initially-selected object is presented with 

a novel object during the test phase, but are severely impaired if the initially-

selected object is presented with other familiar objects; their recognition memory is 

intact, but they are unable to “monitor” their prior choices. Finally, the mid-vlPFC 

(areas 47/12 and 45) is responsible for “active effort to retrieve specific information 

guided by the subject’s intentions and plans” (Petrides, 1996). This concept is 

operationalized in experiments comparing free recall vs. recognition. Lesions of mid-

vlPFC do not impair recognition, nor simple recall such as in a single-location ODR 

task, but severely impair free recall of larger sets of memoranda or complex 

patterns. It is noteworthy that the behaviors ascribed to each of these LPFC 

subregions are fully dissociated: lesions of one subregion do not cause deficits in the 

tasks reliant on other subregions. While lesions of 8a may not cause deficits on 

simple WM tasks, the ventral portion of area 8a is reciprocally connected with 

subcortical structures and regions of the parietal, temporal, and occipital cortices 

involved in oculomotor and spatial processing, which could explain why neurons in 

area 8a exhibit selectivity across such a broad range of visuomotor tasks (Petrides, 

2005a).  
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Given the strength of the evidence supporting Petrides’ model, why has there 

been such debate over the role of PFC in WM? One straightforward explanation is 

differences in experimental design across studies. One study found that PFC lesion-

induced WM performance deficits could be rescued by darkening the room in which 

the experiment was conducted (Malmo, 1942). Another study found that saccades to 

incorrect target locations in an ODR task caused by area 9/46 GABAA inactivation 

were often followed by a second saccade to the correct stimulus location, but that 

these corrective saccades were not included for analysis in prior publications 

(Tsujimoto and Postle, 2012). 

Another concern is that methodological limitations have left much of the 

neuroscientific research examining WM as correlational. Neither human functional 

imaging nor primate electrophysiology can parse the causal relationships between 

behavioral phenomena and neural structures, this generates data that are unable to 

confirm that the signals being analyzed are relevant to the behavior of interest. 

This limited use of causal methods undermines systems and behavioral 

neuroscience in general, beyond simply studies of WM. The widespread adoption of 

optogenetics in rodent models provides a promising way forward, but this 

technology is not yet mature enough for widespread adoption in primate research. 
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Causal methods are especially critical for understanding the role of the PFC and 

other neuronal structures underlying cognition. 

Traditional electrophysiological research methods may also be mismatched 

for work on the PFC. These analytical approaches were developed to characterize 

specific components of the nervous system, involved in sensory coding, which 

process information that directly maps to well-defined, measurable physical 

quantities. These methods are still regularly applied when investigating cognitive 

phenomena, despite the extreme difficulty in quantifying cognitive processes both 

abstract and nebulous. And, it is possible that the operations performed on cognitive 

signals are unlike those performed by the sensory cortex on sensory signals. These 

methods may confound our observations of signals related to myriad task 

parameters in PFC; this difficulty is not solely caused by the common behavioral 

demands across varied task designs, but may be amplified by our reliance on 

inappropriate analytical techniques. 

The PFC is essential for behaviors that require complex yet plastic 

associations across diverse and disparate signals. This unique facility may explain 

the non-traditional tuning and multidimensional representations that are a 

hallmark of PFC neurons. When introducing an explanation for “mixed selectivity” 
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in PFC neurons, Fusi elegantly explains the dilemma posed by traditional 

approaches: 

The traditional view of brain function is that individual neurons and even whole 

brain areas are akin to gears in a clock. Each is thought to be highly specialized for 

specific functions. This, however, does not fit with many observations, especially in 

higher-order cortex. For example, training monkeys on a cognitive-demanding task 

engages huge proportions of neurons in the prefrontal cortex (~40% of randomly 

sampled cells). This means that training either hijacks a huge slice of cortical tissue 

(and monkeys can only learn 2–3 tasks before their brains reach capacity). Or 

instead that neurons can do more than one thing (Fusi et al., 2016). 

Thus traditional electrophysiological approaches may be failing to capture the full 

functional properties of the PFC, which may be better understood through the 

application of ensemble-level analyses. This more nuanced approach permits the 

examination of multidimensional representations and single-trial variability in 

behavioral and neuronal activity. 

The greatest challenge to studying neuronal substrates of cognitive 

phenomena may be experimenters’ difficulty in conceptualizing the phenomena 

under investigation. Sophisticated experimental techniques are only as useful as 

our ability to interpret their results. Traditional neurophysiological analyses have 

likely remained popular in part because they are relatively straightforward, 
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allowing researchers to readily comprehend and communicate their results. High-

dimensional statistics and dynamical systems are not typically a component of 

neuroscientific curricula, though this may be a detriment to the field. They could 

provide a conceptual framework and common language for understanding PFC 

function. 

The legacy of cognitive psychology continues to be a mixed blessing for the 

neuroscientific study of cognition. Cognitive psychology was invaluable in providing 

the conceptual groundwork and motivation for cognitive neuroscience. However, 

models created without regard for the underlying biological substrates of behavior 

will eventually hamstring advancement of the field. How much effort has been 

expended designing and interpreting experiments to conform to the impressionistic 

introspections of 19th century aristocrats? Concepts such as “attention” and 

“working memory” are ultimately both semantic and normative in origin. 

Distinguished scientific careers have been forged by identifying and 

reconciling these semantic and conventional inconsistencies across researchers and 

fields. Advancing the field of cognitive neuroscience is best achieved by taking a 

“brain-first” approach: this would primarily rely on conceptualizing behavioral 

phenomena through the neural structures they require. This will no doubt be 
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challenging, as the brain is not organized for the express purpose of being 

understood by its owner. However difficult, this challenge should be viewed as an 

invitation. Humankind’s myriad and astounding capabilities—critiquing a 

Rembrandt, engineering a skyscraper, passively acquiring language, traveling 

extraterrestrially, driving an automobile, or even recollecting a fond moment of 

connection with a loved one—all, ultimately arise from the nearly invisible activity 

of the brain. Only by accurately capturing this microcosm may we develop a deeper 

understanding of the physical substrate that underlies our shared humanity. 
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