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INTRODUCTION
The lateral prefrontal cortex (LPFC) is necessary for learning associations between arbitrary pairs of stimuli and responses. Lesions to LPFC 
area 8a severely impair the ability of macaques to learn associations between more than one stimulus-response pair simultaneously (Petrides, 
1987). Saccade direction selectivity in single LPFC neurons has also been shown to emerge earlier in a trial as macaques learn the associa-
tions between objects and saccade directions (Asaad et al.,1998). However, the ensemble-level mechanisms of conditional associative learn-
ing (CAL) in LPFC are poorly understood. The need to average neuronal activity across multiple instances of learning in single neuron record-
ings can maskunderlying dynamics in the neural activity, obscuring the relationship between neuronal activity and behavior. We predict that tri-
al-to-trial variability in the learning curve will be reflected in the ensemble state.

QUANTIFYING PERFORMANCE AND BEHAVIOR
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Here we show the subject’s performance for five example rule blocks from a single session. The rule is displayed in the top row 
(e.g. blue = top, green = bottom). Trial outcomes are displayed in the middle row. The bottom row shows a continuous estimate 
of the animal’s performance (i.e. learning curve), estimated as in Smith et al. (2004) J. Nsci. The 95% confidence interval (shad-
ed grey region) can be used to determine the first trial in which the animal’s performance was significantly above chance.

We applied TCA to the ensemble firing rates for each rule block and computed the auROC for saccade direction using the weights of each trial factor. 
The distributions of auROC values for the best of the four factors in each block are shown in the center plot. Interestingly, rule blocks with identical sac-
cade directions did not necessarily contain similar amounts of saccade-related information.
If the saccade-related factor in each block is modulated by 
changes in performance, the difference between weights for op-
posite saccade directions should be greater during periods of 
high performance than during periods of poor performance. The 
lower left plot displays the weight differences between adjacent 
trials with opposing saccades and the performance curve for the 
same example block as in TCA for Exploratory Data Analysis. 
The correlation between weight differences and performance for 
each block is shown on the rightmost plot.
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UNSUPERVISED DISCOVERY OF PERFORMANCE-RELATED LATENT FACTORS
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MULTIELECTRODE ARRAY RECORDING
Two Macaca fascicularis were implantat-
ed with 96-electrode microarrays (Black-
rock Microsystems, Utah) in LPFC area 
8a. We recorded neuronal ensemble ac-
tivity across dozens of recording sessions. 
Ensemble sizes ranged from 40-70 units. 
The data presented here are from a single 
recording session of 69 units.

CONDITIONAL ASSOCIATIVE LEARNING (CAL) TASK

response:
saccade to target

stimulus:
250-500ms

fixation:
700ms

cue:
1000ms

delay
300ms

potential cue colors potential target configurations

A rule is generated by randomly select-
ing two cue color/target location pairs 
(e.g. green = right, blue = left). Once the 
subject has learned the rule (~50 trials 
with ≥80% correct), a new rule is gener-
ated. 

SACCADE CHOICE REPRESENTATION CHANGES
WITH LEARNING
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Decoding saccade direction before vs. after learning

200ms window, 100ms steps
shaded region = s.e.m. for n = 5 blocks

only correct trials were analyzed.
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Correlating decoding & behavioral performance 

A 25-trial window was stepped at 1-trial increments 
across the rule block, using the final 200ms of the 
delay epoch to classify saccade direction.

Unsupervised dimensionality reduction reveals neuronal sub-popu-
lation in prefrontal area 8a whose saccade selectivity is modulated 
in a learning-dependent manner.
Saccade choice representation in prefrontal neuronal ensembles 
during a rule-learning task is more robust after the rule is learned.
Short-timescale fluctuations in behavioral performance correlate 
with the strength of choice representation.

TCA FOR EXPLORATORY
DATA ANALYSIS
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We applied tensor components analysis (TCA; 
courtesy of the Ganguli Lab), an extension of 
PCA to higher-order matrices, to our neural data. 
TCA separates within-trial time variability and 
across-trial variability. Isolating the trial-related 
variability can reveal learning-related changes in 
the neuronal ensemble activity.
The results of four factor TCA applied to an ex-
ample rule block (block 3 in Quantifying Perfor-
mance and Behavior) are plotted here. The time 
weights (2nd column) show how the neuron 
weights (1st column) vary across time within a 
trial. The trial weights (3rd column) show how the 
neuron weights vary across trials.
Note how the separation between trial weights for 
for opposing saccades in Factor 1 (top right) cor-
relates with the animal’s performance. TCA has 
identified a neuronal subpopulation strongly 
modulated by saccade direction in a learning-de-
pendent manner as a major latent feature of the 
ensemble.
For more information on TCA see:
biorxiv.org/content/early/2017/10/30/211128

CONCLUSIONS

Thanks to Alex Williams from the Ganguli Gang for consultation and support with TCA, and Walter Kucharski 
and Stephen Nuara for technical assistance


